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Chapter 1

Rings and Ideals

1.1

We see that x ∈ R implies x ∈ J (the Jacobson radical), hence 1 + xA ⊂ A×. In particular, 1 + x is a unit.
We can now easily deduce that the sum of a nilpotent element and a unit is a unit itself.

1.2

We have the following:
(i) If f(x) = a0 + a1x + . . . + anx

n is a unit in A[x], let g(x) = b0 + b1x + . . . + bmx
m be its inverse.

We deduce that a0 is a unit. We use induction on n to prove that the coefficients are nilpotent. The case
n = 0 is a tautology. If the proposition holds for n− 1, then we see that ar+1

n bm−r = 0 (we just write down
explicitly the relations that ensue from fg = 1 and then multiply each of them by increasing powers of an).
In particular, this implies that am+1

n b0 = 0 and, since b0 is a unit, we deduce that am+1
n = 0. Hence an is

nilpotent and we may apply the inductive hypothesis.
The converse follows from exercise 1 and exercise 2, (ii).
(ii) If f(x) is nilpotent, then we can apply induction to n to show that all its coefficients are nilpotent.

The case n = 0 is a tautology. In the general case, it’s apparent that the leading coefficient will be amn for
suitable m ∈ N hence an is nilpotent. Now the inductive hypothesis applies.

Conversely, if all the coefficients of f(x) are nilpotent and d ∈ N is such that adi = 0, 0 ≤ i ≤ n (e.g. let
d be the sum of the orders of all the orders of the coefficients), then we see that f(x)d = 0.

(iii) If f is a zero divisor, then let g be a polynomial of minimal order, such that fg = 0. If g =
b0 + b1x+ . . .+ bmx

m is not of degree 0, then anbm = 0, hence ang is annihilates f but is of degree less than
m, contradiction. Therefore, g is of degree 0; there is a ∈ A, such that af = 0. The converse is trivial.

(iv) If fg is primitive, then so are f and g, too. The converse is just Gauss’s Lemma, in a more general
context (the elementary argument still carries though).

1.3

The generalization follows easily by induction.

1.4

If J denotes the Jacobson radical and R denotes the nilpotent radical, then J ⊃ R, since R is the intersection
of all prime ideals, while J is the intersection of all prime and maximal ideals. Therefore, we only need to
show J ⊂ R in A[x]. Indeed, if f(x) ∈ J, then 1−f(x)g(x) ∈ A×, for all g(x) ∈ A[x]. In particular 1−f(x)x
is a unit, hence if f(x) = a0 + a1x+ . . .+ anx

n, then a0, a1, . . . an are all nilpotent, hence by exercise 2, (ii)
f(x) ∈ R. This completes the proof.
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4 CHAPTER 1. RINGS AND IDEALS

1.5

We have the following:
(i) If f =

∑∞
n=0 anx

n ∈ A[[x]] is invertible, then obviously a0 is a unit. Conversely, if a0 is a unit, then
we may let b0 be such that a0b0 = 1 and then we may define bn, n ∈ N recursively by the explicit relations
they have to satisfy.

(ii) If f ∈ A[[x]] is nilpotent, then so is a0 ∈ A, which, raised to a power, is the constant term when f is
raised to a power. Therefore, f − a0 = xg(x), g(x) ∈ A[[x]], will also be nilpotent, hence g(x) will also be
nilpotent. But the constant term of g(x) is a1, which must be nilpotent, too. By this process, we show that
all the coefficients will have to be nilpotent. The inverse is not true; a sufficient condition for it to be true
would be the ring to be Noetherian.

(iii) We easily see that 1− f(x)g(x) is a unit for all g(x) ∈ A[[x]] if and only if 1− a0b0 is a unit for all
b0 ∈ A, hence if and only if a0 belongs to the Jacobson radical of A.

(iv) The extension mapping sends any ideal a of A to the ideal ae which consists of f(x) =
∑
anx

n,
an ∈ a. Conversely, given any ideal b of A[[x]], bc consists of all coefficients in any element of b. It’s now
clear that the contraction of a maximal ideal of A[[x]] is maximal too and that mc = (m, x).

(v) This also follows immediately from the above.

1.6

It clearly suffices to show that every prime ideal in A is maximal. Let p be a prime ideal in A and let x be
a non-zero element of A − p. Then the ideal (x) = {ax/a ∈ A} will contain an idempotent element e 6= 0,
say a0x. This implies that a0x(a0x − 1) = 0 ∈ p, hence a0x(a0x − 1) = 0 in A/p, too. However, A/p is an
integral domain, therefore e = a0x 6= 0 implies a0x = 1, or that x is a unit. Hence A/p is a field and this
means that p is maximal.

1.7

Let p be a prime ideal of A. Form A/p, which will be an integral domain. Given any non-zero x ∈ A/p,
there will be a suitable n ∈ N − {1}, such that xn = x or equivalently x(xn−1 − 1) = 0. This implies that
xn−1 = 1, hence that x is invertible. Therefore, A/p is a field and thus p is a maximal ideal.

1.8

Every descending chain of prime ideals has a lower bound (the intersection of them all), hence by Zorn’s
lemma the set Spec(A) has at least one minimal element (in order to apply the lemma, we order the set by
⊇ rather than ⊆).

1.9

Since r(a) is an intersection of prime ideals (those that contain a), we see that r(a) = a implies that a is
an intersection of prime ideals. Conversely, if a is an intersection of prime ideals, then this intersection is
contained in the intersection of prime ideals of r(a), hence r(a) ⊂ a, which shows that r(a) = a (the other
direction is obvious by definition).

1.10

We have the following:
(i) ⇒ (ii) Any maximal ideal in A (there is at least one), will be prime, hence it will coincide with the

unique prime ideal a of A. Hence A is a local ring and R = a. If we consider A/R = A/a (which is a field),
we deduce that every element of A is nilpotent or a unit.
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(ii) ⇒ (iii) This direction is obvious by the definition of a field.
(iii) ⇒ (i) The nilpotent radical is maximal (and thus prime) if A/R is a field. However,

R =
⋂

p∈Spec(A)

p,

hence R is included in the intersection on the right, hence every prime ideal contains R. But this implies
that every prime ideal coincides with R (since R is maximal) and so there is only one prime ideal in A.

1.11

We have the following:
(i) We just apply the given condition to x+ x, to obtain x+ x = (x+ x)2 = x2 + x2 + 2x = x+ x+ 2x,

hence 2x = 0.
(ii) Every prime ideal is maximal follows from exercise 7, while the second corollary follows from (i).
(iii) It suffices to show that any ideal generated by two elements of A is in fact principal. Indeed, given

a, y ∈ A, we claim that (x, y) = (x + y + xy). The direction (x, y) ⊃ (x + y + xy) is trivial. For the other
inclusion, note that any element of (x, y) is of the form

∑
xmyn but given the conditions of idempotency,

we see that the only elements that remain after the reductions in the sum will belong to (x+ y+ xy), hence
the other direction.

1.12

If m is the unique maximal ideal of the ring A, then m contains all the non-units of A. If e ∈ A were
idempotent, then e(e− 1) = 0, hence if e or e− 1 were units, then e would be 0 or 1. Otherwise, e ∈ m and
e− 1 ∈ m, which imply 1 ∈ m, contradiction, since m is by definition a proper ideal of A.

Construction of an algebraic closure of a field (E. Artin)

1.13

We will first show that a = ({f(xf )}f∈Σ) is not the unit ideal. Otherwise, given any polynomial p ∈ A it
would be presentable as a finite sum in the form

p =
∑
f∈Σ

yff(xf ),

where yf ∈ A. But 1 clearly cannot be represented in such a form, hence α 6= (1). If we now let m be the
maximal ideal of A containing a, we observe that K1 = A/m is a field extension of K in which every f ∈ Σ
has a root. Repeating the construction, we obtain K2 in which every f ∈ Σ has two roots (if possible), and
similarly we obtain Kn for al n ∈ N. We deduce that L =

⋃∞
i=1Ki is a field extension which contains all the

roots of every f ∈ Σ; its algebraic elements form an algebraic closure K for K.

1.14

The fact that Σ has a maximal element is a trivial application of Zorn’s lemma; we just need to show that
every ascending chain of ideals has a maximal element. Now, assume that m is a maximal ideal of Σ and let
xy ∈ m, pxy = 0, with p 6= 0. We claim that x ∈ m or y ∈ m. Assume the contrary. Then, m ⊂ (m, x) and
(m, x) would still be an ideal of Σ, since its elements are clearly zero divisors. This furnishes a contradiction
to the maximality of m. Therefore, every maximal ideal of Σ is prime.

The prime spectrum of a ring
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1.15

We have the following:
(i) The relations V (E) = V (a) = V (r(a)) are obvious.
(ii) Similarly, the relations V (0) = X = Spec(A) and V (1) = ∅ are obvious.
(iii) Again, we have ⋂

i∈I
V (Ei) = V (

⋂
i∈I

Ei)

(iv) Similarly trivial are the relations V (a ∩ b) = V (ab) = V (a) ∪ V (b).
These results show that the space Spec(A) of all prime ideals of A can be endowed with a topology - the

Zariski topology - if we define the V (E) to be its closed sets.

1.16

We immediately see the following:
Spec(Z) = {(p) : p ∈ Z is prime }.
Spec(R) = ∅.
Spec(C[x]) = {(p) : p ∈ C[x] is of degree 1}.
Spec(R[x]) = {(p) : p ∈ R[x] is irreducible}.
Spec(Z[x]) = {(p) : p ∈ Z[x] is irreducible}.

1.17

Given f ∈ A, we define Xf = {p ∈ Spec(A)/f /∈ p}. It’s obvious that X = X1, ∅ = X0 and O = X−V (E) =⋃
f∈E Xf , hence the set {Xf , f ∈ A} is a basis for the Zariski topology on Spec(A). We now have:

(i) Xf ∩Xg = Xfg (obviously)
(ii) Xf = ∅⇔ f ∈ R (obviously)
(iii) Xf = X ⇔ f ∈ A× (obviously)
(iv) Xf = Xg ⇔ r(f) = r(g) (obviously)
(v) Note that for f, g ∈ A, Xf = Xg if and only if (f) = (g). In particular, Xf = X = X1 if and only if

f ∈ A×. We also easily deduce (by de Morgan’s formula and exercise 15) that:⋃
i∈I

Xfi
= X({fi}i∈I)

Therefore, if {Xfi
}i∈I is an open cover of X (and it’s only those covers of X that we need to consider, by a

standard proposition in point-set topology), then

X({fi}i∈I) = X1,

which implies that the {fi}i∈I generate the unit ideal. Therefore, there is a finite subset of indices J such
that

1 =
∑
j∈J

gjfj ,

where gj ∈ A. Now, obviously the {fj}j∈J generate the unit ideal, hence the {Xfj}j∈J are a finite subcover
of X.

(vi) This follows by exactly the same argument as above, but considering covers of the form {Xfi
}i∈I ,

where Xfi
⊂ Xf .

(vii) If an open subspace Y of X is quasi-compact, then considering a standard cover by sets of the form
Xf , f ∈ A we see that Y must be a finite union of sets Xf .

Conversely, if an open subspace Y of X is a union of a finite number of sets Xf , then any open cover
{Xfi

}i∈I of Y induces an open cover for each of the Xf (namely {Xf ∩Xfi
}i∈I). By (vii), each of those will

have a finite subcover and these subcovers yield a finite subcover of X.
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1.18

We have the following:
(i) By the definition of the Zariski topology, {x} is closed in Spec(A) if and only if {x} = V (E) for some

subset E of A, hence if and only if px is the only prime ideal that contains E, hence if and only if E = px
and px is maximal (attaching any elements of A− E would generate the unit ideal).

(ii) The relation {x} = V (px) is obvious by our remarks above.
(iii) y ∈ {x} = V (px) if and only if py ⊃ px
(iv) If x and y are distinct points of Spec(A), then either px * py or py * px; assume without loss of

generality the latter. This is equivalent by our previous observations to x /∈ {y}, which implies that X −{y}
is an open set that contains x but not y.

1.19

We claim that Spec(A) is irreducible if and only Xf ∩ Xg 6= ∅ for f and g non-nilpotent. Indeed, since
{Xf}f∈A are a basis for the Zariski topology on Spec(A), we see that any two non-empty sets will intersect
if and only if any two non-empty basis elements intersect. This is equivalent to Xfg = Xf ∩ Xg 6= ∅ if
Xf , Xg 6= ∅. The latter condition is fulfilled if and only if f and g are not nilpotent (by exercise 17) hence
the previous condition is equivalent to the following: there is a prime ideal p such that fg /∈ p if f, g are not
nilpotent hence fg /∈ R if f /∈ R, g /∈ R . Therefore, X is irreducible if and only if the nilradical is prime.

1.20

We have the following:
(i) If Y is an irreducible subspace if a topological space X, then Y is also irreducible, since by definition

any neighborhood of a boundary point will intersect Y (hence any two open sets in Y continue to intersect
in Y ).

(ii) We consider the set Σ of all irreducible subspaces of X; it’s not empty, since x ∈ Σ for all x ∈ X.
Then, by an application of Zorn’s lemma in the usual fashion (any ascending chain of irreducible subspaces
will be bounded by the union of all its elements which is irreducible itself) we guarantee a maximal element
for Σ.

(iii) The maximal irreducible components of X are obviously closed (otherwise their irreducible closures
would strictly contain them, contradiction) and they cover X (we see that any point x of X is contained in
a maximal irreducible subspace by applying Zorn’s lemma to the space Σx which comprises the irreducible
subspaces of X that contain x). In a Hausdorff space each point is a maximal irreducible component.

(iv) In the case of Spec(A) we note that the closed sets V (p), where p is a minimal prime ideal are
irreducible (any two open sets will be of the form V (p)− V (E) and hence they will intersect) and that any
two points x ∈ V (p1), y ∈ V (p2) can be separated by disjoint open sets. Therefore, the maximal irreducible
components of Spec(A) are V (p), where p ∈ Spec(A) is minimal.

1.21

We have the following:
(i) The following equivalences:

q ∈ φ∗−1(Xf )⇐⇒ φ∗(q) ∈ Xf ⇐⇒ f /∈ φ∗(q) = φ−1(q)⇐⇒ q ∈ Yφ(f)

yield that φ∗−1(Xf ) = Yφ(Xf ) Now φ∗ is continuous, since the Xf form a basis for the Zariski topology.
(ii) The following equivalences:

q ∈ φ∗−1(V (a))⇐⇒ φ∗(q) ⊇ a⇐⇒ q ⊇ ae ⇐⇒ q ∈ V (φ(a)e)

yield that φ∗−1(V (a)) = V (ae), as desired.
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(iii) The statement that
φ∗(V (b)) = V (bc)

follows in the same fashion as the previous one.
(iv) By proposition 1.1, we know that φ∗(Y ) = V (ker(φ)) and φ∗ induces a bijective (and continuous,

by the previous question) map from Y to V (ker(φ)). Thus we merely need to show that φ∗−1 is continuous.
Let Y ′ = V (b) be any closed subset of Y and let a = φ−1(b). Then, the following equivalences:

p ∈ φ∗(Y ′) = φ∗(V (b))⇐⇒ p = φ∗(q) ⊇ b⇐⇒ p = φ−1(q) ⊇ bc ⇐⇒ p ∈ V (bc)

imply that φ∗(Y ′) = V (bc) and in particular that φ∗(Y ′) is closed when Y ′ is and therefore that φ∗ is a
homeomorphism.

In particular, the natural surjective projection map from A to A/R induces a homeomorphism between
Spec(A) and Spec(A/R).

(v) By the previous statement, we have

φ∗(Y ) = φ∗(V (0)) = V (0c) = V (ker(φ))

thus φ∗(Y ) is dense in X ⇐⇒ φ∗(Y ) = V (ker(φ)) = X ←→ ker(φ) ⊆ p for all prime ideals p⇐⇒ ker(φ) ⊆ R.
(vi) The desired result follows immediately by definition.
(vii) By assumption, the two only prime ideals of A are p and 0, which implies that p is a maximal ideal

of A and thus A/p is a field. This yields that the ring B = (A/p)×K will also have only two ideals, namely
q1 = {(x, 0) : x ∈ A} and q2 = {(0, k) : k ∈ K}. The ring homomorphism φ : A −→ B defined by φ(x, x) is
bijective (φ∗(q1) = 0 and φ∗(q2) = p) and continuous.

However, φ∗ is not a homeomorphism. In the topological space Spec(B) = {q1, q2}, we have {q1} = V (q1)
is closed as q1 * q2, but φ∗(q1) = 0 is not closed in Spec(A), since 0 is not a maximal ideal of A (by exercise
18).

1.22

A decomposition of A in the form
A ' A1 ×A2 × . . .×An

yields a decomposition
Spec(A) ' Spec(A1)× Spec(A2)× . . .Spec(An)

If we embed every space Spec(Ai) as Xi = (0, 0, . . . , Spec(Ai), 0, . . . , 0) in Spec(A), it’s a standard argument
that the existence of the latter decomposition is equivalent to the decomposition of Spec(A) as a disjoint
union of the Xi.

Given a ring A, we have the following:
(i) ⇒ (ii) This direction follows from our previous observation and the definition of connectedness.
(ii) ⇒ (iii) If a decomposition of the form A ' A1 × A2 (where A1, A2 are non-trivial) existed, then a

non-trivial idempotent element of A would be the pull-back of (1, 0).
(iii) ⇒ (ii) If e ∈ A is a non-trivial idempotent, then X = Spec(A) decomposes as X1 tX2, where

X1 = {p ∈ X/e ∈ p}

and
X2 = {p ∈ X/e− 1 ∈ p}.

It’s a trivial observation that X1 ∩ X2 = ∅ (as in our proof that a local ring possesses no non-trivial
idempotents) and similarly trivial is the verification that X = X1 ∪X2. This decomposition implies that X
is disconnected.
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1.23

We have the following:
(i) Each f ∈ A is idempotent hence Xf induces a disjoint decomposition as in the previous exercise. It’s

now obvious that the sets X1 and X2 with the notation of exercise 22 are simultaneously closed and open.
(ii) By the formula of exercise 17, and by the fact that a Boolean ring is always a Principal Ideal Domain,

we deduce that there is f ∈ A such that

X(f1,f2,...,fn) = Xf1 ∪Xf2 ∪ . . . ∪Xfn
= Xf

(iii) The hint in the book is a full proof; let Y ⊂ X be both open and closed. Since Y is open, it is a
union of sets Xf . Since Y is a closed subspace of a quasi-compact space, it is quasi-compact too hence it is
a finite union of sets Xf , say Xf1 , Xf2 , . . . , Xfn

. Now, (ii) finishes the proof.
(iv) X is (obviously) compact and Hausdorff.

1.24

There is nothing to be provided other than a tedious verification of the axioms.

1.25

Stone’s Theorem that every Boolean lattice is isomorphic to the lattice of open and closed sets of some
compact Hausdorff space follows immediately from exercises 23 and 24.

1.26

We will just repeat the construction of the book, which shows that X ' Max(C(X)), by the map µ : X →
Max(C(X)) given by x 7→ mx = {f ∈ C(X)/f(x) = 0}. Note that mx is always a maximal ideal, as the
kernel of the surjective map that sends f to f(x) (whence C(X)/mx ' R is a field).

(i) Let m be any maximal ideal in X. Then, let V (m) be the set of common zeroes of functions in m,
namely V (m) = {x ∈ X/f(x) = 0 for all f ∈ m}. We claim that V (m) 6= ∅. Indeed, otherwise, for every
x ∈ X there is fx ∈ m, such that fx(x) 6= 0. Since fx is continuous, there is a neighborhood Ux of x on
which fx does not vanish. By the compactness of X, a finite number of these neighborhoods cover X, say

{Uxi
}i=1,2,...n.

Then, f =
∑n
i=1 f

2
xi
∈ m, but f does not vanish on any point of X, hence it’s a unit, hence m = (1),

contradiction. Therefore, V (m) 6= ∅. Let x ∈ V (m). Then, ⊆ mx, which implies m = mx by the maximality
of m. Hence m ∈ Imµ and µ is surjective.

(ii) By Urysohn’s lemma, the continuous functions separate the points of C(X) and this implies that
mx 6= my if x 6= y. Hence µ is injective.

(iii) For f ∈ C(X), let
Uf = {x ∈ X/f(x) 6= 0}

and
Uf = {m ∈ X/f ∈ m}.

We obviously have µ(Uf ) = Uf . Since the open sets Uf (resp. Uf ) form bases of the topologies on X and X
we deduce that µ is also continuous (as is µ−1). Therefore X is homeomorphic to Max(C(X)).

Affine algebraic varieties

1.27

There is nothing to be proved in this exercise if we invoke the Nullstellensatz for the surjectivity of µ.
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1.28

We have the following situation:

Ψ : [φ : X → Y, regular]↔ Homk(P (Y ), P (X)),

where Ψ is defined by
φ 7−→ Ψ(φ) : (η 7→ η ◦ φ).

We see that Ψ is injective because η(φ1) = η(φ2) for all η implies φ1 = φ2 (obviously; just let η be the
natural projections). It’s also surjective; if Ψ is any k-algebra homomorphism P (Y )→ P (X), then Ψ = φ◦η,
where η is the polynomial transformation that sends the values of φ on P (X) to the values of Ψ.



Chapter 2

Modules

2.1

Since m and n are coprime, there are integers a and b such that am + by = 1. Therefore, given x ⊗ y ∈
(Z/mZ) ⊗Z (Z/nZ), we see that x ⊗ y = 1(x ⊗ y) = am(x ⊗ y) + nb(x ⊗ y) = a(mx ⊗ y) + b(x ⊗ ny) =
a(0⊗ y) + b(x⊗ 0) = 0, and since every generator is identically 0, so will the whole tensor product be.

2.2

If we tensor the exact sequence
a
incl−→ A

π−→ A/a −→ 0,

we obtain
a⊗AM

incl⊗1−→ A⊗AM
π⊗1−→ (A/a)⊗AM −→ 0

and this induces an isomorphism between (A/a)⊗AM and the cokernel of incl⊗1, which is (A⊗AM)/(a⊗A
M) 'M/aM , since given any ideal a of A a trivial argument shows that a⊗AM ' aM (we need M to be
flat for this to be true). Hence, (A/a)⊗AM 'M/aM, as desired.

The above proposition is true even if M is not a flat A-module. A proof in this general case would
proceed as follows: consider the map φ : (A/a)⊗AM −→M/aM , defined by (a, x) 7→ ax mod aM . This is
clearly a bilinear homomorphism, which induces a linear homomorphism M −→ (A/a)⊗AM whose inverse
is x 7→ 1⊗A x (where 1 is the image of 1 in A/a). It is clear that aM is contained in the kernel of this last
linear map, and hence the construction yields an isomorphism between M/aM and (A/a)⊗AM , as desired
(Lang, Algebra, 612).

2.3

Let m be the maximal ideal of A, k = A/mA its residue field. We also let Mk = k ⊗A M ' M/mM, by
exercise 2. The condition M ⊗A N = 0 implies (M ⊗A N)k = 0, hence Mk ⊗A Nk = (M ⊗A N)k ⊗A k = 0.
But Mk and Nk are vector fields over the field k, hence dimk(Mk ⊗A Nk) = dimk(Mk)dimk(Nk), hence
Mk ⊗A Nk = 0 implies Mk = 0 or Nk = 0. Let without loss of generality the former be true. Then, since m
is the unique maximal ideal, it will coincide with the Jacobson radical of A, so M/mM = Mk = 0 implies
M = mM and by Nakayama’s lemma this yields M = 0.

2.4

If M,N,P are A-modules, we know that

(M ⊕N)⊗ P = (M ⊗ P )⊕ (N ⊗ P ),

11
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hence we have the following equivalence: M =
⊕

i∈IMi is flat if and only if an exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

remains exact after tensoring by M :

0 −→M ′ ⊗ (
⊕
i∈I

Mi) −→M ⊗ (
⊕
i∈I

Mi) −→M ′′ ⊗ (
⊕
i∈I

Mi) −→ 0.

The above can be written as

0 −→
⊕
i∈I

(M ′ ⊗Mi) −→
⊕
i∈I

(M ⊗Mi) −→
⊕
i∈I

(M ′′ ⊗Mi) −→ 0,

and this sequence is exact if and only if each component

0 −→ (M ′ ⊗Mi) −→ (M ⊗Mi) −→ (M ′′ ⊗Mi) −→ 0

is exact, hence if and only if each Mi is flat.

2.5

We observe that

A[x] =
∞⊕
m=0

(xm),

hence A[x] is a flat A-algebra if and only if each component (xm) is a flat A-algebra (by the previous exercise).
By Lang’s lemma (Lang, Algebra, 618), it suffices to show that the natural map φ : a⊗ (xm) −→ a(xm) is an
isomorphism for any ideal a of A. Indeed, surjectivity is obvious and we may write any arbitrary generator
of a⊗ (xm) as a⊗ xm (transferring the constants to the first slot; the product will be in a, because a is an
ideal). Any two such generators will map to the same element in a(xm) is and only if their respective first
slots coincide and thus if and only if they coincide. Hence the natural map is an isomorphism, as desired.

2.6

First note that M [x] = {m0 + m1x + . . . + mrx
r/mi ∈ M, r ∈ N} is a module over A[x], if we define the

product of two polynomials in the obvious fashion. We see that since M = AM = {am/a ∈ A,m ∈ M},
M [x] will coincide with (AM)[x].

We also see that the homomorphism φ : A[x] ⊗A M −→ (AM)[x] defined as a(x) ⊗A m 7→ a(x)m has
an obvious inverse ψ : a(x)m 7→ a(x)⊗A m and thus it induces an isomorphism of tensor products between
A[x]⊗AM and (AM)[x] = M [x], as desired.

2.7

Note that if A is a ring and a is any ideal in it, then

A[x]/a[x] ' (A/a)[x].

For the proof, just note that a[x] is the kernel of the natural projection map from A[x] to (A/a)[x].
Now let p be a prime ideal of A. Then, A/p is an integral domain, and hence so is (A/p)[x] by the Hilbert

Basis Theorem. But, by the above, A[x]/p[x] will be an integral domain too, thus p[x] sill be a prime ideal
in A[x], as desired.

In the case p is maximal in A, it doesn’t necessarily follow that p[x] is maximal in A[x]; if F is a field, it
doesn’t necessarily follow that F[x] is a field too.
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2.8

We have the following:
(i) If M and N are flat A-modules, then so is M ⊗A N , since the tensor functor is associative (tensoring

an exact sequence first by M and then by N is equivalent to tensoring by M ⊗A N).
(ii) Note first that if

0 −→M ′
1⊗f−→ B ⊗AM

1⊗g−→ B ⊗AM ′′ −→ 0

is an exact sequence and B is flat, then

0 −→M ′
f−→M

g−→M ′′ −→ 0

is also exact. By proposition 2.19, this boils down to the statement that if the homomorphism 1 ⊗A f is
injective, then so is the homomorphism f . For assume that 1⊗A f is injective, but f isn’t. Then, there are
distinct x1, x2 such that f(x1) = f(x2), and for every suitable y we would have y ⊗A f(x1) = y ⊗A f(x2)
hence y ⊗A x1 = y ⊗A x2 (by the injectivity of 1⊗A f). But then, (1)⊗A (x) = 0 (where x = x1 − x2) and
since both modules are finitely generated, we deduce (by exercise 3) that x = 0, contradiction.

Now if
0 −→M ′

f−→M
g−→M ′′ −→ 0

is exact, then by the assumptions of the exercise it will remain exact when tensoring first by B (after which
we may regard the sequence as a sequence of B-modules) and then by N . The above lemma implies that
we may remove the tensor by the flat A-module B without penalty and this will leave us with an exact
sequence; but that’s merely the initial sequence tensored by N . Hence N is flat as an A-module, as desired.

2.9

We shall only use the assumption that 0 −→M ′
f−→M

g−→M ′′ −→ 0 is exact and M ′′ is finitely generated.
We see that if x1, x2, . . . , xn are generators forM ′′, then x1, x2, . . . , xn in Coker(g) = M ′′/f(M ′) will generate
Coker(g). But by the exactness of the sequence, Coker(g) 'M , hence M will be finitely generated.

2.10

We shall first show the following embedding:

(N/u(M))/(a(N/u(M))) ↪→ (N/aN)/u(M/aM)

The mapping is the natural one: given n ∈ N/u(M) we send it first to ñ ∈ N/aN and then to ˆ̃n ∈
(N/aN)/u(M/aM). It’s a trivial verification that the kernel of this A-module homomorphism is included
in a(N/u(M)), hence the embedding. However, we notice that (N/aN)/u(M/aM) = 0 since the induced
homomorphism is surjective. Therefore, we will have (N/u(M))/(a(N/u(M))) = 0, too and by Nakayama’s
lemma N/u(M) = 0, hence N = u(M), hence u is surjective, as desired.

2.11

We have the following:
(i) Let φ : An −→ Am be an isomorphism and let m be a maximal ideal of A. Then, m annihilates the

module (A/m)⊗A Am , hence we may regard (A/m)⊗A Am (as well as (A/m)⊗A An, of course) as a vector
space over the field A/m. But then φ induces an isomorphism

1⊗ φ : (A/m)⊗A Am −→ (A/m)⊗A An

between two vector spaces of dimensions n and m and this clearly implies m = n.
(ii) If φ : Am −→ An is surjective, then An ' Am/N , where N = kerφ. But, if x1, x2, . . . xm generate

Am, then obviously x1, x2, . . . , xm generate An, hence m ≥ n, as desired.
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(iii) Thanks to Nick Rozenblyum for informing me that the statement is in fact correct, but it’s probably
one of the most difficult problems in the book!

If φ : Am −→ An is injective, then it necessarily follows that m ≤ n. Indeed, let {e1, e2, . . . , em} be
the standard canonical basis of Am and let φ(ei) = (ai1, ai2, . . . , ain) ∈ An for 1 ≤ i ≤ m. Then, let D be
the n × n matrix (aij). Without loss of generality, we may consider the cases m,n > 0 and D 6= 0 (the
omitted cases are trivial); also, by possibly rearranging the orders of the basis elements of Am and An, we
may assume that the non-zero r × r minor of D is at the upper left corner.

Suppose, contrary to the desired conclusion, that m > n. Then, m ≥ r+ 1 and we denote the (r+ 1)× r
block matrix at the upper left corner of D by D′. For each j = 1, 2, . . . , n the quantity

∑r+1
i=1 aijbi can be

realized as the determinant of a (r + 1) × (r + 1) matrix. If 1 ≤ j ≤ r, then the matrix has two identical
columns up to ±1. If r+ 1 ≤ j ≤ n, then the determinant of the matrix is an (r+ 1)× (r+ 1) minor (again,
up to ±1) of D. Therefore, we have

∑r+1
i=1 aijbi = 0 for all 1 ≤ j ≤ n. But this means that

φ(b1, . . . , br+1, 0, . . . , 0) = (
r+1∑
i=1

ai1bi, . . . ,
r+1∑
i=1

ainbi) = (0, . . . , 0) ∈ An

which is a contradiction to the injectivity of φ since (b1, . . . , br+1, . . . , 0, . . . , 0) 6= (0, 0, . . . , 0) ∈ Am.
This completes the proof that m ≤ n.

2.12

Let e1, e2, . . . , en be a basis of An. Choose u1, u2, . . . , un such that φ(ui) = ei. We now claim that M =
kerφ ⊕ (u1, u2, . . . , un). Indeed, if x ∈ M , then φ(x) =

∑n
i=1 yiei = φ(

∑n
i=1 yiui) for some yi ∈ A, hence

there is a unique n ∈ kerφ such that x = n+
∑n
i=1 yiui, which clearly implies M = kerφ⊕ (u1, u2, . . . , un).

Since there is a finite number of generators x1, x2, . . . , xm of M , we see that at most a finite number of
them generate (u1, u2, . . . , un) (we may add the ui to the xi if necessary) and hence the complement of
(u1, u2, . . . , un) in M , namely kerφ, will be generated by the rest of the xi. In particular, it will be finitely
generated.

2.13

In order to show the injectivity of g, we will repeat a familiar argument: let y map to 0 under g. Then,
1⊗ y = 0, thus (1)⊗ (y) = 0, hence (y) = 0 by exercise 3, since (1) and (y) are both finitely generated. This
yields y = 0, as desired.

Then, let p : NB −→ N be defined by sending b⊗ y to by. We now claim that ker p and g(N) are direct
summands of NB and moreover NB = g(N) ⊕ ker p. Indeed, we obviously have g(N) ∩ ker p = 0, and also
NB = g(N) + ker p, since any generator b⊗ n of NB can be written as b(1⊗ n) + 0⊗ n. This completes the
proof.

Direct limits

2.14

We will just repeat the construction of the book; there is nothing else to be proved. Let A be a ring, I a
directed set and let (Mi)i∈I be a family of A-modules indexed by I. For each pair i, j ∈ I such that i ≤ j,
let µij : Mi →Mj be a homomorphism and suppose that the following axioms are satisfied:

(i) µii is the identity mapping on Mi.
(ii) µij = µkjµik, for elements i ≤ j ≤ k of I. Then the modules Mi and homomorphisms µij are said to

form a direct system M = (Mi, µij) over the directed set I.
We shall construct an A-module M called the direct limit of the direct system M . Let C be the direct sum

of the Mi; identify each module Mi with its embedding in C. Then let D denote the submodule generated
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by all elements of the form xi−µij(xi) for i ≤ j and xi ∈Mi. Let M be C/D, let µ : C →M be the natural
projection and let µi be the restriction of µ on Mi.

The module M together with the family of homomorphisms µi : Mi → M , is called the direct limit of
the direct system M . It’s denoted by

lim
−→

Mi.

From the construction, it is clear that µi = µj ◦ µij , for i ≤ j.

2.15

Any element of M = C/D is in the image of the natural projection map µ : C → C/D. Hence, any element
of M can be written as µ(x), where x ∈ Mi for some i ∈ I, since M is the direct sum of the Mi. But
µi ≡ µ|Mi

, hence any element can be written as µi(xi), for some i ∈ I.
Also, if an element µi(xi) is equal to zero, then xi must belong to the ideal generated by some element

x′i − µij(x′i) for some i ≤ j. But then, µij(xi) ∈ (µij(x′i)− µij(x′i)) = (0), hence µij(xi) = 0 as desired.

2.16

In the situation of exercise 14, we will show that if M ′ were any A-module such that given any A-module N
and a collection of homomorphisms αi : Mi −→ N such that αi = αj ◦ µij for all i ≤ j, then there exists a
unique homomorphism α : M ′ −→ N such that αi = α ◦ µi for all i ∈ I, then M ′ is isomorphic to M . Note
of course that M has the property itself; we just define α(x) = ai(xi), where x = µi(xi) (as in the previous
exercise).

If the above property is shared by some module M ′, then taking N = M and αij = µij yields a unique
homomorphism α : M ′ −→ M such that µi = α ◦ µi for all i ∈ I. But then α is surjective and injective,
hence an isomorphism.

2.17

By the construction, it is clear that in this case

lim
−→

Mi =
∑
i∈I

Mi =
⋃
i∈I

Mi,

the last equality being an equality of sets. The first equality is true because modding out by D has the effect
of identifying the canonical images of the xi thus cancelling the distinction between elements whose sets of
coordinates coincide (they are different in

⊕
Mi but not in

∑
Mi).

In particular, we deduce that any A-module is the direct limit of its finitely generated submodules.

2.18

Indeed, Φ defines a unique map
φ = lim

−→
: M −→ N.

Given x ∈M there is xi ∈Mi for some i ∈ I such that µi(xi) = x. We define φ(x) as:

φ(x) = νi(φi(xi)),

so that the required condition is satisfied. We see that φ is well defined because if x = µi(xi) = µi(x′i), then
νi(φi(xi)) = νi(φi(x′i)), since by the given condition and exercise 14, νi ◦ φi = νj ◦ νij ◦ φi = νj ◦ φj ◦ µij .
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2.19

We will prove that if (Mi, µi), (Ni, νi) and (Pi, ρi) are direct systems over a common index set I such that
there are families {φ}i∈I and {ψ}i∈I of A-module homomorphisms that render the sequence

Mi
φi−→ Ni

ψi−→ Pi

exact for all i ∈ I, then the corresponding sequence

M
φ−→ N

ψ−→ P

we obtain after passing to the limit is also exact.
For every i ∈ I we have Imφi = kerψi. Now, given x ∈ kerψ we see by exercise 18 that, for some i ∈ I,

x ∈ Imφi ⊂ Imφ, hence Imφ ⊃ kerψ. Similarly the other direction shows Imφ = kerψ, which is equivalent
to exactness of the desired sequence.

Tensor products commute with direct limits

2.20

We will show that ψ : P −→M ⊗N is an isomorphism, so that

lim
−→

(Mi ⊗N) ' (lim
−→

Mi)⊗N.

To achieve that, we just need to exhibit an inverse for ψ. This inverse will be the map φ : M ⊗N −→ P that
arises from g : M ×N −→ P which in turn is defined by the canonical mapping gi : Mi×N −→Mi⊗N for
every i ∈ I. The uniqueness of g is guaranteed by exercise 16. We further see that φ ◦ ψ and ψ ◦ φ are the
identity, hence they are isomorphisms, as desired.

2.21

In order to show that the mappings αi : Ai −→ A are ring homomorphisms we need to show they map 1Ai

to 1A (the other conditions are already satisfied). But this is obvious.
If A = 0, then 1 = 0, hence there is i ∈ I such that αi(xi) = 1 = 0 and hence xi = 0. But xi = 1, too.

Thus Ai = 0.

2.22

It’s obvious that the nilradical of the direct limit of the Ai is the direct limit of their nilradicals Ri and that
if each Ai is an integral domain then so is their direct limit.

2.23

There is nothing to be added to the construction of the book.

Flatness and Tor

2.24

We have the following:
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(i) ⇒ (ii) Let 0 −→ N ′ −→ N −→ N ′′ −→ 0 be an exact sequence. Then, since M is flat, tensoring by
M will leave the sequence exact, hence its homology groups, which are precisely TorAn (M,N), will be 0 for
all n > 0 and all A-modules N (N = N,N ′, N ′′ if we take the above exact sequence).

(ii) ⇒ (iii) This follows directly.
(iii) ⇒ (i) As before, let 0 −→ N ′ −→ N −→ N ′′ −→ 0 be an exact sequence. Then, the Tor sequence

Tor1(M,N ′′) −→M ⊗N ′ −→M ⊗N −→M ⊗N ′′ −→ 0

will be exact. But the condition TorA1 (M,N ′′) = 0 yields that the initial sequence tensored by M is exact,
or that M is flat.

2.25

Let 0 −→ E′ −→ E be an exact sequence. Then we have the following exact and commutative diagram:

0

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0 // N ′ ⊗ E′ //

��

N ⊗ E′ //

��

N ′′ ⊗ E //

��

0

0 // N ′ ⊗ E // N ⊗ E // N ′′ ⊗ E // 0

In it, the 0 on top is justified by the hypothesis that N ′′ is flat, and the two zeroes on the left are justified
by the Tor exact sequence of homological algebra. If N ′ is flat, then the first vertical map is an injection ,
and the snake lemma shows that N is flat. Conversely, if N is flat, then the middle column is an injection.
The two zeroes on the left and the commutativity of the left square show that the map N ′ ⊗E′ −→ N ′ ⊗E
is an injection, so N ′ is flat. This completes the proof. (Lang, Algebra, 616)

2.26

First, assume that Tor1(M,N) = 0 for all finitely generated modules M of A. Since any A-module is a
direct limit of its finitely generated submodules, and taking direct limits is an exact operation (by exercises
17 and 19 respectively), we obtain that Tor1(M,N) = 0 for all A-modules M , hence N is flat. We can
reduce this condition to Tor1(M,N) = 0 for all cyclic modules M over A. For if M is finitely generated by
x1, x2, . . . , xm over A, and M ′ = (xm), M ′′ = (x1, x2, . . . , xm−1), then M = M ′ ⊕M ′′ and N is flat for M
if and only if it’s flat for M ′ and M ′′ (by exercise 4); but both of those have less generators than M , so the
condition can be relaxed to cyclic A-modules (in particular, modules of the form A/a for some ideal a of A).
By proposition 2.19, we may just consider finitely generated ideals a.

The other direction is obvious.

2.27

We have the following:
(i) ⇒ (ii). Let x ∈ A. Then A/(x) is a flat A-module, hence in the diagram

(x)⊗A

��

β=1×π// (x)⊗A/(x)

π̃

��
A // A/(x)

the mapping α is injective. Hence Im(β) = 0, hence (x)2 = (x2) = (x)
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(ii)⇒ (iii) Let x ∈ A. Then, by the assumption x = ax2 for some a ∈ A, hence e = ax is idempotent and
(e) = (x). Now, if e and f are idempotents, then (e, f) = (e+f + ef) (as in exercise 1.11). This implies that
every finitely generated ideal has an idempotent generator (in particular, it’s principal) and it’s will also be
a direct summand since A = (e)⊕ (e− 1) (as in exercise 1.22).

(iii) ⇒ (i) Let N be any A-module. Then, given any finitely generated ideal a of A, there is a finitely
generated (by the proof of the previous direction) ideal b such that A = a ⊕ b. But this implies that
Tor1(A/a, N) = Tor1(b, N) = 0, which is equivalent to flatness (by exercise 26).

2.28

Any ring A for which given any x ∈ A there is n ∈ N such that xn = x is absolutely flat. This is so because
(x) = (xn−1) and xn−1 is idempotent, hence so is (x). By exercise 27, this condition is equivalent to absolute
flatness. A Boolean ring is merely a special case of the above.

Let f : A � B be a surjective homomorphism, so that B = f(A) and B is isomorphic to A/N , where
N = ker(f). Then, the principal ideals of A/N are in bijective correspondence with the principal ideals of A
that contain N . Any such ideal a gives rise to a decomposition A = a⊕b, hence B ' A/N = (a/N)⊕ (b/N).
Hence every principal ideal of B is a direct summand of B. By exercise 27, this condition is equivalent to
absolute flatness.

Let x ∈ A be an element of an absolutely flat local ring A (whose maximal ideal is m). Then, if x is a
non-zero element of A, we have x(ax − 1) = 0 for some a ∈ A. If x /∈ m, then x is a unit. If x ∈ m, then
necessarily ax − 1 /∈ m for otherwise 1 = ax − (ax − 1) ∈ m, contradiction. Therefore, ax − 1 is a unit in
this case, but then the above equation yields x = 0, contradiction. Therefore, x is a unit and since x was
arbitrary, we conclude that A is a field.

If A is absolutely flat and x ∈ A is a non-unit, then x = ax2 for some a ∈ A, hence x(ax − 1) = 0 and
ax− 1 6= 0, hence x is a zero divisor.



Chapter 3

Rings and Modules of Fractions

3.1

If there is s ∈ S such that sM = 0, then obviously S−1M = 0 (because then m/t = ms/ts = 0/ts = 0
for any elements m/t ∈ S−1M). Conversely, if S−1M = 0 and x1, x2, . . . , xm generate M , then there are
elements of S s1, s2, . . . , sm such that simi = 0 for all 1 ≤ i ≤ n. We may then put s = s1s2 . . . sm and this
choice will clearly do.

3.2

Let a/s, a ∈ a, s ∈ 1 + a be an element of S−1a and a′/t, a′ ∈ A, t ∈ 1 + a be an element of S−1A. Then,
we will show that 1 + aa′/st ∈ (S−1A)×, hence that S−1a ⊂ J (the Jacobson radical of S−1A). Indeed,
1 + aa′/st = (st+ aa′)/st whose inverse st/(st+ aa′) belongs to S−1A, since st+ aa′ ≡ 1 mod a.

We may use this fact to show (2.5) without resorting to determinants. For if M is finitely generated, then
so is S−1M and hence M = aM implies S−1M = (S−1a)(S−1M), hence Nakayama implies that S−1M = 0.
By exercise 1, there is s ∈ 1 + a such that sM = 0, as desired.

3.3

We let U mean f(T ), where f : T −→ S−1A maps t ∈ T to t/1, and ST = {st/s ∈ S, t ∈ T} (so that
ST is multiplicative if so are S and T ). Under these assumptions, the homomorphism φ : (ST )−1A −→
U−1(S−1A), defined as φ(a/st) = (a/s)/(t/1) is an isomorphism (obviously).

3.4

The S−1A-module homomorphism φ : S−1B −→ T−1B defined by b/s 7→ b/f(s) has an obvious inverse (the
map that sends b/f(s) to b/s) and therefore it’s an isomorphism.

3.5

Suppose that A has a non-zero nilpotent element x. Then, x belongs to all prime ideals p of A and so do all
its powers {xn}n∈N; thus given any prime ideal p, the element (x/1) ∈ Ap is nilpotent. If we now choose the
maximal (thus prime) ideal p that contains the ideal Ann(x), we make sure that x 6= 0 in Ap, hence if Ap

contains no non-zero nilpotent element for all prime ideals p, then A contains no non-zero nilpotent element.
The analogous statement for integral domains is not true though. For example, A = Z/6Z is not an

integral domain, but Ap is an integral domain for all prime ideals of A (namely, (2) and (3)).

19
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3.6

The fact that Σ = {S ⊆ A : S is multiplicatively closed and 0 /∈ S} has maximal elements follows from a
trivial application of Zorn’s lemma (given an ascending chain, we consider the union of all its elements); it’s
also trivial that if S ∈ Σ is maximal, then A− S will be a minimal prime subset of A.

In order to show that A − S is an ideal, we need to show that it’s closed under addition and scalar
multiplication. Indeed, if S is maximal, then we have a /∈ S if and only if there is s ∈ S and n ∈ N such that
san = 0. For the proof of this, observe that the set aZ≥0S = {ans : n ≥ 0, s ∈ S} is multiplicatively closed
and contains S and a. Now, if a /∈ S, b /∈ S and ans1 = bms2 = 0, then (ab)ns1 = 0 and (a+ b)m+ns1s2 = 0,
hence S is closed under addition and multiplication, as desired.

Conversely, let p be a minimal prime ideal of A. Then, A − p is obviously in Σ and any S′ ∈ Σ that
contained S would yield a prime ideal p′ = A− S′ that would be contained in p, contradiction.

3.7

We have the following:
(i) We shall prove that if S is saturated, then

A− S =
⋃

p∩S=∅
p.

Indeed, it’s obvious that the left hand side contains the right hand side. For the other direction, let x ∈ A−S
and let (x) = a. Then, if we let S/a = {s + a : s ∈ S} be the set of cosets of S in a, we observe that
0 = 0 + a /∈ S/a (because that would imply S ∩ a 6= ∅ which is absurd by the saturation condition on S).
Also, S/a is multiplicatively closed as a subset of A/a because S is. Therefore, by exercise 6 there exists a
maximal multiplicatively closed set Σ = a − p, where p is a minimal prime ideal such that S ⊆ Σ. This p
must be of the form p/a where p is some prime ideal that contains a; in particular, p∩S = ∅ and this shows
that x belongs to the right hand side. Thus the other inclusion

A− S ⊆
⋃

p∩S∅
p,

holds and this completes the proof.
(ii) If S is multiplicatively closed, then

S = A−
⋃

p∩S=∅
p

is a saturated and multiplicatively closed set that contains it. If S
′
were any saturated and multiplicatively

closed subset of S that contained S, then its complement in A would contain at least one prime ideal that has
non-trivial intersection with S. But then, this intersection would belong to both S and to A− S′ ⊆ A− S,
a contradiction. Therefore S is minimal.

Now if we put S = 1 + a, we immediately see that p ∩ (1 + a) 6= ∅ if and only if p + a = (1). Therefore,
p ∩ (1 + a) = ∅ if and only if there is some prime ideal p′ such that p′ ⊇ p + a. But then

1 + a = A−
⋃

p∩(1+a)=∅

p = A−
⋃
p⊇a

p.

3.8

We have the following:
(i) ⇒ (ii) In particular, φ is surjective and this implies that t/1 ∈ T−1A can be represented as a/s for

some a ∈ A, s ∈ S. Now, if a ∈ S, then t/1 = a/s is invertible in S−1A. Otherwise, it’s the relation
(st− a)u = 0 for some u ∈ S that implies invertibility of t/1.
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(ii) ⇒ (iii) If the inverse of t/1 is x/y, then there is u ∈ S such that (ux)t = yu ∈ S, as desired.
(iii) ⇒ (iv) It’s obvious that no element of T could belong to a prime ideal that meets S, therefore

T ⊆
⋃

p∩S=∅
p = S,

as desired.
(iv) ⇒ (v) This is an immediate corollary of the above.
(v) ⇒ (i) We will show that the induced map

φp : (S−1A)p −→ (T−1A)p

is bijective for all prime ideals p of S−1A and this will conclude the proof by proposition 3.9 in the book.
Note that any such ideal must be of the form S−1p, where p is a prime ideal of A that doesn’t meet S; by
(iv) this condition yields p ∩ T = ∅ too.

Indeed, an element of (S−1A)S−1p has the form a/s1
f/s2

, where a ∈ A, f ∈ A− p and s1, s2 ∈ S. If

φS−1p =
a/s1
f/s2

= 0,

then there would be f ′/s3 ∈ S−1p such that

f ′

s3

a

s1
=

f ′a

s3s1
= 0

This in turn implies that there exists t ∈ T such that tf ′a = 0 in A, But then tf ′ /∈ p since f ′ /∈ p and
T ∩ p = ∅, thus tf ′/1 /∈ S−1p. Hence

a/s1
f/s2

=
tf ′a/s1
tf ′f/s2

= 0

and φS−1p is injective, as desired.
In order to show surjectivity, note that an element of (T−1A)S−1p is of the form a/t

f/s , where a ∈ A, s ∈ S,
f ∈ A− p and t ∈ T . Since t ∈ p, we have 1

t/1 ∈ (T−1A)S−1p. Thus

a/t

f/s
= φS−1p(

ta/1
tf/s

)

and φS−1p is surjective, as desired. This completes the proof.

3.9

Note first that the set S0 of all non-zero divisors of A is a saturated multiplicatively closed subset of A,
whence it follows that D is a union of prime ideals. A prime ideal p of A is minimal if and only if S = A− p
is a maximal multiplicatively closed subset of A that doesn’t contain 0; thus it follows that S the complement
in A of any union of prime ideals; in particular, A − p = S ⊇ A − D and so p ⊆ D. We then have the
following:

(i) Any strictly larger set S′0 ⊃ S0 contains at least one zero-divisor a (let ax = 0, with x 6= 0). We then
notice that x/1 = (xa)/a = 0 but x 6= 0, hence the natural homomorphism A −→ S′−1

0 A cannot be injective.
(ii) An element of S−1

0 A has the form a/s, where a ∈ A and s is a non-zero divisor. We immediately see
that if a is a zero divisor, then so is a/s and otherwise a/s is a unit. Hence, every element in S−1

0 A is a zero
divisor or a unit.

(iii) The natural homomorphism f : A −→ S−1
0 A is injective, by (i). Now, given any element a/s ∈ S−1

0 A
the denominator s is not a zero divisor hence it must be a unit. If ss′ = 1, then a/s = as′/1 = f(as′), hence
f is also surjective. This completes the proof.
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3.10

We have the following:
(i) If A is absolutely flat, then every principal ideal in A is idempotent, hence given x ∈ A there is χ ∈ A

such that x(χx− 1) = 0. Let a/s be any element of S−1A with s(σs− 1) = 0 and a(αa− 1) = 0. Then, we
see that (a/s)((α/σ)(a/s)− 1) = 0, hence S−1A is absolutely flat.

Actually, the two conditions are equivalent, if we assume the latter and take S = {1}.
(ii) Assume that A is absolutely flat. Then, given any maximal ideal m of A, Am is absolutely flat by

(i). Given any non-zero, non-invertible a/s ∈ Am (namely a ∈ m, s ∈ A−m), there is α/σ ∈ Am (namely
α ∈ A, σ ∈ A − m) such that (a/s)((α/σ)(a/s) − 1) = 0. Obviously, ((α/σ)(a/s) − 1) = (αa − σs)/(σs)
cannot be a unit. It should thus be an element of the maximal ideal of Am (which is a local ring), therefore
we must have αa− σs ∈ m. But since a ∈ m, αa ∈ m, we conclude that σs ∈ m, which is absurd since m is
prime and none of s and σ belong to m.

Conversely, let Am be a field for all maximal ideals m and let x ∈ A. Then, if x is a unit, (x) is obviously
idempotent. Otherwise, there is a maximal ideal m which contains x. Assume that x(αx − 1) 6= 0 for all
α ∈ A. Then, the element x(αx − 1)/1 is always invertible, hence there is a/b ∈ Am and u ∈ A − m such
that ax(αx − 1)u = bu, which is a contradiction, since the left hand side belongs to m, while the right to
A − m. Therefore, there is some α ∈ A such that αx2 = x, which means that (x) is idempotent, thus A is
absolutely flat, as desired.

3.11

We have the following:
(i) ⇔ (ii) The condition that A/R is absolutely flat is equivalent to the statement that given any non-

nilpotent x ∈ A, there is a ∈ A such that x(ax− 1) is nilpotent or, equivalently, such that x(ax− 1) belongs
to all prime ideals of A. Now, let x /∈ p. Obviously x is not nilpotent but there is a ∈ A such that x(ax− 1)
is; in particular, x(ax−1) = 0 in A/p, but x 6= 0. Since A/p is an integral domain, the above implies ax = 1,
or that x is a unit. Since x was arbitrary, we obtain that A/p is a field hence p is maximal.

Conversely, if every prime ideal is maximal, then given x ∈ A and p ∈ Spec(A), there is ap such that
x(apx− 1) ∈ p. Therefore, we see that

x
∏

p∈Spec(A)

(apx− 1) ∈ R

and the product takes the form x(bx− 1) for some b ∈ A. But then x(bx− 1) = 0 in A/R. Since the class x
was arbitrary, we conclude that A/R is absolutely flat.

(ii) ⇔ (iii) This equivalence follows from chapter 1, exercise 1.18, because {p} = V (p).
(iv) ⇔ (ii) In this case, we see that Xp and Xq partition X and separate p and q.
If the above conditions are fulfilled, then Spec(A) is compact (since the definition of quasi-compactness

in the book seems to coincide with the usual definition of compactness and Spec(A) is always quasi-compact)
and the proof of the last equivalence shows that Spec(A) is totally disconnected.

3.12

The condition that A is an integral domain guarantees that T (M) is a submodule of M . We then have the
following:

(i) This first statement is obvious.
(ii) If x ∈ T (M) (say xy = 0, with y 6= 0 in A), then by the properties of module homomorphisms

yf(x) = f(yx) = 0 and y 6= 0, hence f(x) ∈ T (N), which of course means f(T (M)) ⊆ T (N).

(iii) The first map in 0 −→ M ′
f−→ M

g−→ M ′′ will definitely remain injective when passing on to

0 −→ M ′
f−→ M

g−→ M ′′; what remains to be shown is that Imf = ker g remains true. Indeed, let x ∈
Imf = ker g; this, together with x ∈ T (M) (which follows from our previous assertion and (ii)), shows that
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x ∈ ker g and thus Imf ⊆ ker g. Conversely, let y ∈ ker g ⊆ ker g = Imf ; this,together with the fact that f
is injective (hence 0 = ay = af(x) = f(ax) if and only if ax = 0) shows that y ∈ Imf and thus Imf ⊇ ker g.
This completes the proof that Imf = ker g.

(iv) Note that if S = A − {0}, then the field of fractions K of A is merely S−1A, hence there is an
isomorphism between K ⊗AM and S−1M . Therefore the map φ : M −→ K ⊗AM that sends x to 1⊗ x is
equivalent to (in particular, it will have the same kernel as) the map ψ : M −→ S−1M that sends x to x/1.
Note that x/1 = 0 if and only if there is a non-zero s ∈ A such that sx = 0, thus if and only if x ∈ T (M).
This completes the proof.

3.13

First note the straightforward fact that T (S−1M) = S−1(T (M)). Then we have the following:
(i) ⇒ (ii) T (Mp) = T (M)p = 0
(ii) ⇒ (iii) O.K.
(iii) ⇒ (i) Assume that T (M) 6= ∅; say x ∈ T (M) with xy = 0 and x, y 6= 0. Then, let m be a maximal

ideal that contains a = Ann(x) (therefore note that αx 6= 0, αy 6= 0 for all α ∈ A − m). We easily see that
y(x/1) = 0 in Mm, and y 6= 0, which contradicts our assumption that Mm is torsion-free. Therefore M is
torsion-free.

3.14

The condition of the book implies that (M/aM)m = 0 for all the maximal ideals m of A/a (note of course
that a ⊂ Ann(M/aM) hence we may regard M/aM as an A/a-module). By proposition 3.8 this implies
m/aM = 0, or M = aM .

3.15

We just repeat the hint of the book; it constitutes a full solution. Let x1, x2, . . . , xn be a set of generators
of F = An and let e1, e2, . . . , en be a canonical basis. Define φ : F −→ F by letting φ(ei) = xi; this
homomorphism is obviously surjective. In order to prove injectivity, we may as well prove the statement
for the Am-module Fm (where m is any maximal ideal of A). Now Am is a local ring; let k = A/m be its
residue field. Also let N be the kernel of φ. Since F is a flat A-module (A is flat and the product of any

number of flat modules is flat too), the exact sequence 0 −→ N
incl−→ F

φ−→ F −→ 0 yields an exact sequence

0 −→ k ⊗N 1⊗incl−→ k ⊗ F 1⊗φ−→ k ⊗ F −→ 0. But k ⊗ F = kn is an n-dimensional vector space and 1 ⊗ φ is
surjective thus injective, thus k ⊗ N = 0. But both k and N are finitely generated (the latter by chapter
2, exercise 12), thus N = 0 (since we can’t obviously have k = 0). This completes the proof that φ is an
isomorphism.

We deduce that every set of generators of F has at least n elements.

3.16

We have the following:
(i) ⇒ (ii) This part of the problem is clear by proposition 3.16.
(ii) ⇒ (iii) Assume that me = (1) for some maximal ideal m of A. By the assumption, there is q ∈

Spec(B) such that qc = m. But, taking extensions yields (1) = me = qce ⊆ q, a contradiction.
(iii)⇒ (iv) We note that since B is flat, we only need to show the statement for an arbitrary finitely gen-

erated submodule M ′ of M . Indeed, we know that M is the direct limit of its finitely generated submodules
{Mα}α∈A, and direct limits commute with tensor products. Therefore,

lim
−→

(B ⊗AMα) = B ⊗AM
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and since B is flat, B ⊗A M = 0 if and only if B ⊗A Mα = 0 for some α ∈ A (this holds if we omit the
tensor by B and continues to hold when we tensor by B, because the natural injective map that embeds
Mα into M remains injective when we tensor by B). Assume that such a module Mα existed; by exercise
19, (viii) we see that B ⊗A M ′ = 0 if and only if f∗−1(Supp(M)) = ∅. But, since the support of M is
non-empty (because M is non-zero) and there is at least one maximal ideal m such that me 6= (1), we arrive
at a contradiction. This completes the proof of the statement.

(iv) ⇒ (v) Let M ′ be the kernel of M −→ M sending x to 1 ⊗ x. Then, the sequence 0 −→ M ′
incl−→

M −→ MB is exact and since B is flat, so will the sequence 0 −→ M ′B
1⊗incl−→ MB −→ (MB)B be. But, by

chapter 2, exercise 13 the mapping (MB)B −→ MB is injective, hence M ′B = 0, which by our assumption
yields M ′ = 0 (this is also a lemma in Lang’s, Algebra).

(v) ⇒ (i) If we let M = A/a, then our assumption implies that the mapping M −→ MB = B/ae is
injective. Pulling B/ae back to A yields A/a = A/aec whence a = aec.

B is said to be faithfully flat over A.

3.17

Given any injective map f : M ′ −→ M (where M ′,M are A-modules) and any A-module N , we observe
that

f ⊗ 1⊗ 1 −→ (M ′ ⊗B N)⊗ C −→ (M ⊗B N)⊗C C

will be injective by the conditions of the problem and the canonical isomorphisms (M ′ ⊗B N) ⊗ C '
M ′ ⊗C (M ⊗B C), (M ⊗B N) ⊗ C ' M ⊗C (M ⊗B C). But then the flatness of C implies that f⊗B :
M ′ ⊗B N −→M ⊗B N is injective, and since N was arbitrary, it implies that B is a flat A-algebra.

3.18

We just repeat the hint of the book; it constitutes a full solution. By the given assumptions, Bp will be
flat over Ap, because flatness is a local property, and so will Bq over Bp (because the former is a localized
version of the latter and S−1A is always flat over A). Therefore, Bq is flat over Ap. We now note that the
maximal ideal of Ap extends to the maximal ideal of Bq, hence in particular its extension doesn’t coincide
with (1). Thus, by exercise 16, we deduce that the mapping Spec(Bq) −→ Spec(Ap) is surjective.

3.19

We have the following:
(i) It’s obvious that M 6= 0 if and only if Supp(M) 6= ∅ by proposition 3.8.
(ii) Let M = A in (vii).
(iii) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence, then so is 0 −→ M ′p −→ Mp −→ M ′′p −→ 0

and obviously Mp is non-trivial if and only if either of M ′p and M ′′p is non-trivial; this implies Supp(M) =
Supp(M ′) ∪ Supp(M ′′), as desired.

(iv) We see that Mp = (
∑
Mi)p =

∑
(Mi)p (to see this, just bring an arbitrary element of the right-hand

side over a common denominator) and the left-hand side is non-trivial if and only if at least one of the (Mi)p

is and this yields Supp(M) =
⋃

Supp(Mi), as desired.
(v) Let a = 0 in (vii).
(vi) By chapter 2, exercise 3, (M ⊗A N)p = Mp ⊗Ap Np is non-trivial if and only if both Mp and Np are

non-trivial, hence Supp(M ⊗A N) = Supp(M) ∩ Supp(N), as desired.
(vii) We see that p ∈ Supp(M/aM) ⇐⇒ (M/aM)p 6= 0. This is equivalent to the existence of a class

x ∈ M/aM such that xk 6= 0 for all k ∈ A − p, which in turn is equivalent to the existence of an element
x ∈ M such that xk /∈ aM for all k ∈ A − p. It is straightforward that if there exists such an x, then
p ⊇ a + Ann(M). Conversely, if no element of a + Ann(M) is contained in A− p, then we see that kx /∈ aM
(where x is any element of M − aM). This completes the proof that Supp(M/aM) = V (a + Ann(M)), as
desired.
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(viii) We see that p ∈ f∗−1(Supp(M)) if and only if Mf∗q 6= 0 and this is equivalent to Bq 6= 0 and
Mq 6= 0. Hence, f∗−1(Supp(M)) = Supp(B) ∩ Supp(M) = Supp(B ⊗AM), as desired.

3.20

We have the following:
(i) It’s obvious that every prime ideal of A is a contracted ideal if and only if f∗ : Spec(B) −→ Spec(A)

is surjective.
(ii) Given any prime ideal q = ae of Spec(B), its image under f∗ will be aec, thus q = aece = f∗(q)e.

Therefore, if f∗(q) = f∗(q′), then clearly q = q′ and f∗ is injective.
The converse is not true. For example, consider the situation of chapter 1, exercise 21: the mapping φ∗

is injective (in fact, it’s bijective), but the ideal q2 = (A/p)× 0 is not extended. Otherwise, there would be
an ideal a of A such that φ(a) ⊆ q2 and then for all a ∈ a, a/1 = 0 in k, which yields a = 0 since A is an
integral domain.

3.21

We have the following:
(i) By chapter 1, exercise 21 (and since φ∗ is surjective onto its image) we deduce that φ∗ : Spec(S−1A) −→

V (ker(φ)) is a homeomorphism.
In particular (and this is obvious as well), the image of Spec(Af ) is the basic open set Xf .
(ii) To see that S−1f∗ : Spec(S−1B) −→ Spec(S−1A) is the restriction of f∗ on S−1Y we just need

to observe that S−1f∗ by definition maps f(S)−1q ∈ Spec(f(S)−1B) to S−1f∗(f(S)−1)q = S−1f∗(q) ∈
Spec(S−1A), hence the result after the restrictions described in the exercise. The fact that S−1Y = f∗(S−1X)
is a corollary of the previous observation and the surjectivity of f∗, established in (i).

(iii) This follows directly from questions (ii) and (iii) and the obvious fact that q ⊇ b is and only if
f
∗
(q) ⊇ a.
(iv) By the previous questions we readily obtain

f∗−1(p) = Spec(Bp/pBp).

What now remains to be shown is that

Spec(Bp/pBp) = Spec(k(p)⊗A B),

where k(p) is the residue field at p. We know from the hint of exercise 16 that Bp/pBp ' (Ap/p
c)⊗AB, but

since Ap is a local ring, the only possible contraction pc of p is m, the maximal ideal of Ap. This completes
the proof, since k(p) = Ap/m.

3.22

We see that the canonical image of Spec(Ap) in Spec(A) is the set of all ideals contained in p; but that’s
exactly the intersection

⋂
f /∈pXf of all open neighborhoods of p in Spec(A).

3.23

We have the following:
(i) If U = Xf = Xg, then Af ' Ag (by the obvious mapping a/fn 7→ a/gn), and this in particular implies

that A(U) is well defined and depends only on U .
(ii) If Xg = U ′ ⊆ U = Xf , then we know that implies r(f) = r(g), hence there is n ∈ N such that

gn = uf for some u ∈ A. Choose the minimal such n. This choice induces a restriction homomorphism
ρ : A(U) −→ A(U ′) defined by a/fm 7→ a/gmn and the map is well0defined by the minimality of n ∈ N and
depends only on U and U ′.
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(iii) It’s obvious, by definition, that ρ |UU= idU .
(iv) It’s obvious, by definition, that U ⊇ U ′ ⊇ U ′′ implies ρUU ′′ = ρU ′U ′′ ◦ ρUU ′ , hence the given diagram

is commutative.
(v) Consider the homomorphism

φ :
⊕
f /∈px

Af −→ Ap

defined by

φ((
af
fnf

)f /∈px
, 0, 0, . . . ) =

(
∏
af )

(
∏
fnf )

,

where we include only the non-zero terms in the product above.
We observe that the map is surjective (this is obvious). For any element of the domain that is sent to

0/1 ∈ Ap there is s /∈ p such that
s
∏
f

af = 0 ∈ p

and this implies that for at least one f /∈ p, af ∈ p. This implies that af

fnf belongs to the ideal generated by

elements of the form a′

fn − a′um

(f ′)nm (notation as in the problem itself); just let f, f ′ be units (in which case
n = 1) and let a′ = af/(fm − 1). Conversely, it’s obvious that any element of this form will belong to the
kernel of the map kerφ. By the first isomorphism theorem,⊕

f /∈px

Af/ kerφ ' Ap.

But the left hand side is merely the direct limit of the A(U) = Af ; this completes the proof and establishes
that

lim−−−→
U3px

A(U) = Ap.

3.24

This result follows by the property of quasi-compactness (every open cover has a finite subcover) that Spec(A)
enjoys. If {Ui}1≤i≤n is a finite subcover of {Ui}i∈I , then we observe that there is s such that s = s1, s2
in A(U1 ∩ U2), and inductively, if s = s1, s2, . . . , sn in A(U1, U2, . . . , Un), then s = sn+1 will coincide with
s1, s2, . . . , sn+1 in A(U1 ∩ U2 ∩ . . . Un+1) and we can construct a global s by this inductive procedure.

3.25

We reproduce the hint of the book; it constitutes a full proof. Let p be a prime ideal of A and let k = k(p)
be the residue field at p. Then, by exercise 21, the fibre h∗−1(p) is merely the spectrum of (B⊗A C)⊗A k '
(B ⊗A k)⊗k (C ⊗A k). Hence, p ∈ h∗(T ) if and only if (B ⊗A k)⊗k (C⊗)Ak) 6= 0 if and only if B ⊗A k 6= 0
and C ⊗A k 6= 0 which is equivalent to p ∈ f∗(Y ) ∩ g∗(Z). This completes the proof that

h∗(T ) = f∗(Y ) ∩ g∗(Z).

3.26

Again, we will merely repeat the hint of the book; it constitutes a full proof. Let p be a prime ideal of A.
Then, the fibre f∗(p) is, by exercise 21, the spectrum

B ⊗A k(p) = lim
−→

B ⊗A k(p) = lim
−→

(Bα ⊗A k(p)),

since direct limits commute with tensor products. Therefore, we obtain that p /∈ f∗(Spec(B)) if and only if
f∗(p) = ∅ if and only if Bα ⊗A k(p) = 0 for some α ∈ A, which is equivalent to f∗α(p) = ∅. This shows that
p ∈ f∗(Spec(B)) if and only if p ∈ ∩f∗(Spec(Bα)).
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3.27

We have the following:
(i) This follows directly from exercises 25 and 26.
(ii) We observe that p ∈ f∗(Spec(B)) if and only if there is q ∈ Spec(B) such that p = f∗(q) which is

equivalent to the existence of α ∈ A such that p ∈ f∗α(Spec(Bα)). This establishes the desired formula

f∗(Spec(B)) = f∗α(Spec(Bα)).

(iii) This is implies that the sets of the form f∗Spec(B) where A
f−→ B is any A-algebra form the closed

subsets of a topology called the constructible topology.
(iv) Since the sets Xg are the basis of the constructible topology (as happens with the Zariski one), we

may repeat the proof of chapter 1, exercise 17, (vii).

3.28

We have the following:
(i) Any open set Xg is the image f∗(Spec(Ag)) of the induced map of A −→ Ag given by g 7−→ g/1,

therefore it’s closed.
(ii) The space XC′ is, by definition, totally disconnected, and thus Hausdorff.
(iii) The identity mapping is indeed a continuous bijection XC −→ XC′ . Since XC is also compact (by

the usual definition), the inverse of inclusion will also be continuous, therefore XC is homeomorphic to XC′ .
(iv) This follows immediately from the previous questions.

3.29

If F = g∗(Spec(C)) ⊆ Spec(B) is any closed set in the constructible topology of Spec(B), then f∗(F ) =
(g ◦ f)∗(Spec(A)) hence it’s closed in the constructible topology of Spec(A). This implies that f∗ is a closed
mapping.

3.30

If the constructible and the Zariski topology coincide on Spec(A), then Spec(A) is compact (by exercise 28,
(iv)) hence by exercise 11, A/R is absolutely flat.

Conversely, if A/R is absolutely flat, then by exercise 11 every prime ideal is maximal. Therefore, given
any open set Xg, and any point p in it, there is gp ∈ A such that ggp = 1 in A/p (of course because A/p is
a field). With this notation, g ∈ p implies gp /∈ p, therefore

Xg = V (
∏

p∈Spec(A)

(gp)),

which shows that all open sets in the topology are simultaneously open and closed. Since the constructible
topology is the minimal topology that achieves this (by exercise 28), we obtain that the Zariski topology is
finer than the constructible one. But the converse is also true, therefore the two topologies coincide. This
completes the proof.
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Chapter 4

Primary Decomposition

4.1

If an ideal a has primary decomposition, then the minimal ideals that contain a are the minimal ideals
associated with it; in particular, their number is finite (less than the number of ideals associated with a).
But the subspaces V (p), where p is minimal, are exactly the irreducible components of Spec(A) = Spec(A/a)
equipped with the Zariski topology.

4.2

If a = r(a), then a is an intersection of prime ideals by chapter 1, exercise 9, say

a =
⋂
i∈I

pi.

Without loss of generality, we may assume this decomposition to be a minimal one, and then in particular
we’ll have pi * pj if i 6= j. Since the pi are prime, we’ll have r(pi) = pi for each one of them. By the
minimality of the decomposition, we see that all the pi are necessarily minimal, and therefore a has no
embedded prime ideals.

4.3

Assume that A is absolutely flat and p is any primary ideal of A. Let x be any element of A − p. We see
that x 6= 0 in A/p and by the absolute flatness of A there is a ∈ A such that x(ax−1) = 0 ∈ p; in particular,
x(ax− 1) = 0. But then ax− 1 is nilpotent in A/p and therefore ax is a unit by chapter 1, exercise 1. This
implies that x is unit and thus A/p is a field and p is maximal.

4.4

The elements of m = (2, t) are of the form 2k+ tf(t), where f ∈ Z[x], k ∈ Z; this ideal is obviously maximal
(the quotient Z[t]/m is isomorphic to {+1}, which is a field). The ideal q = (4, t) is not a power of m; the
contrary assumption leads to a contradiction because q contains 3, which no power of m contains. However,
q is primary, as we easily see. Finally, g(x)n = 4k + tf(t), for some n ∈ N, k ∈ Z (which is equivalent to
g ∈ q), if and only if g(x) = 2k + tf∗(t) ∈ m, which shows that q is m-primary.

29
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4.5

The ideals p1, p2 are obviously prime (by exercise 8), while m is maximal because k[x1, x2, . . . , xn]/m ' k, a
field. An element T of k[x, y, z] belongs to a = p1p2 if and only if:

T = x2f(x, y, z) + xyg(x, y, z) + xzh(x, y, z) + yzp(x, y, z),

for suitable polynomials f, g, h, p. This is equivalent to T ∈ p1 ∩ p2 ∩m2, establishing the desired equality.

4.6

The answer turns out to be yes, 0 has primary decomposition in C(X). For the proof, we will first need a
lemma: any non-unit of C(X) is a zero divisor (note, however, that no nonzero element of C(X) is nilpotent!).
Indeed, if f ∈ C(X) is not a unit, then the set Z of zeroes of f in X is non-empty (otherwise, g = 1

f is the
inverse of f); say x0 ∈ Z. If Z has non-empty interior, then by Urysohn’s lemma there is a map g ∈ C(X)
such that g is 0 outside the interior of Z and 1 at some fixed point in the interior of Z; in particular, fg = 0
everywhere on X, but g 6= 0.

If the interior of Z is empty, then X − Z is dense in X, hence f cannot be 0 everywhere in X − Z (a
continuous function is ’determined’ by its values at a set dense to its domain). Actually, Z must be closed
(since f is continuous), hence we may replace Z by Z above. Let x′0 /∈ Z such that f(x′0) 6= 0. Now, since
X is compact and Z is closed, Z will be compact too; take, for every x ∈ Z an elementary neighborhood U
of x; we keep the (finite) number of those x(n) whose neighborhoods cover Z. Now, assume that {U (n)} is
such a cover of Z and order the set of open neighborhoods of each x(n) by inclusion and let U (n)

i ,⊇ be any
infinite descending chain. Pick points x(n)

i in U
(n)
i , so that xi 6= xj unless i = j (we can do that since the

space is assumed normal). For each point, define (by Urysohn’s lemma) f (n)
i ∈ C(X) such that f (n)

i is 0
outside U (n)

i (in particular at x′0) and 1 at xi. Note that the filter {x(n)
i }i∈I converges to x(n) for all n ∈ N

(by the very definition of compactness) and since the f (n)
i are continuous f (n)

i (x(n)
i ) i∈I−→ f (n)(x(n)) (for fixed

n). The product of all these maps except for one of them, say f (1), yields a map g ∈ C(X) that has the
desired property of g 6= 0 and gf ≡ 0 on X.

We now know that the set of all zero-divisors is the union of prime ideals p1, p2, . . . , pn (by the fact that
its complement is saturated and chapter 3, exercise 7); note that these prime ideals are primary, of course.
Since

C(X) =
n⋃
i=1

pi,

we deduce that

0 =
n⋂
i=1

pi,

and this presentation provides a primary decomposition of 0.

4.7

We have the following:
(i) By definition, ae = A[x]a = a[x], as desired.
(ii) This is implied by the following fact we proved in chapter 2, exercise 6: (A/a) ' A[x]/a[x] for all

ideals a of A. This implies that if A/p is an integral domain, then so is A[x]/p[x], and therefore if p is a
prime ideal of A, then so is p[x].

(iii) Given any ring B (in particular, A[x]/q[x]), the property P : ”B 6= 0 and every zero divisor of B is
nilpotent” is invariant under isomorphisms, therefore the identification of the previous exercise yields that
q[x] would be primary if (A/q)[x] satisfied P . But q is primary in A, therefore (A/q)[x] 6= 0 and given any
zero-divisor f ∈ (a/q)[x], there is a ∈ A/q − {0}, such that af = 0 (by chapter 1, exercise 2, (iii)). This
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implies, since q is primary, that all the coefficients of f are nilpotent, hence that f itself is nilpotent, by
chapter 1, exercise 2, (ii).

The only thing that is needed to complete the proof is the equality r(q[x]) = r(q)[x] = p[x], but this
follows immediately from the isomorphism of the previous question and, in particular, the identification of
their radicals (this follows again from chapter 1, exercise 2).

(iv) Certainly if

a =
n⋂
i=1

qi

is a minimal primary decomposition of a ⊆ A, then a[x] =
⋂n
i=1 p[x] is a primary decomposition in A[x], by

the previous questions. This will also be minimal, because the radicals of the components obviously remain
distinct and

qi +
n⋂

j=1,j 6=i

qj

implies

qi[x] +
n⋂

j=1,j 6=i

qj [x],

which completes the proof.
(v) This is obvious by the correspondence established in the previous question.

4.8

By the previous exercise, we may consider without loss of generality the case p = (x) in k[x]. It’s obvious
that p is prime and all its powers are primary (it’s a simple matter of divisibility).

4.9

If x ∈ A is a zero divisor, then x ∈ a = (0 : a) for some non-zero a ∈ A and the set of prime ideals containing
a is non-empty (since a 6= 0); therefore, there are indeed minimal prime ideals that contain a. If p is one of
those, then x ∈ p ∈ D(A).

Conversely, if x ∈ p and p is minimal in the set of all prime ideals that contain a = (0 : a) for some
a ∈ A, then x is contained in all prime ideals that contain a, therefore, x ∈ r(a). This implies that there is
a minimal n ∈ N such that xn ∈ a, hence x(xn−1a) = 0 and xn−1a 6= 0, by the definition of n; this means
that x is a zero-divisor.

We see that p ∈ D(S−1A) is equivalent to p = S−1q for some q ∈ Spec(A) that doesn’t meet S. But
then, since S−1(0 : a) = 0 : S−1a, and q is a necessarily a prime ideal, we deduce the desired equality:

D(S−1A) = D(A) ∩ Spec(S−1A).

The fact that D(A) is the set of ideals associated with 0 (in case, of course, 0 has primary decomposition)
is obvious; it follows from the first Uniqueness Theorem and proposition 4.7.

4.10

From the definition of Sp(0), it is clear that Sp(0) = {x ∈ A : there is some k ∈ A − p such that xk = 0}.
We thus have the following:

(i) If x ∈ Sp(0), then xk = 0 ∈ p and since k /∈ p, we must have x ∈ p. Therefore, Sp(0) ⊆ p.
(ii) If r(Sp(0)) = p and p′ ⊂ p, then choose x ∈ p such that x /∈ p′. Then, there is k /∈ p (in particular,

k /∈ p′) and n ∈ N such that xnk = 0 ∈ p′. But since neither xn nor k are elements of p′, this is absurd.
Therefore, p is minimal.
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Conversely, by exercise 11, Sp(0) is a primary ideal, hence its radical will be prime. But, if r(Sp(0)) ⊆ p
and p is minimal, we must have r(Sp(0)) = p.

(iii) This is obvious from the definition of Sp(0).
(iv) This part of the exercise doesn’t hold unless 0 has primary decomposition (or, at least, holds vacu-

ously). In case 0 does have primary decomposition, then by exercise 9 D(A) is the set of prime ideals that
belong to 0 hence the equality

0 =
⋂

p∈D(A)

Sp(0).

4.11

First of all we claim that Sp(0) is primary. Indeed, let xy ∈ Sp(0), which means there is k /∈ p such that
k(xy) = 0. If y /∈ Sp(0) (in particular, ky 6= 0), then x/1 is a zero divisor in Ap. But since p is a minimal
prime ideal, there are no prime ideals in Ap other than the unique maximal ideal m, hence RAp = m and
the set of zero-divisors (generally a union of prime ideals) also coincides with m. We deduce that x/1 is in
fact nilpotent, and this means that xn ∈ Sp(0) for some n ∈ N. Therefore, Sp(0) is primary.

Now we will show that Sp(0) is contained in all p-primary ideals. Indeed, if q is p-primary, then q ⊆ p,
hence if x ∈ Sp(0), with kx = 0 ∈ q (where k /∈ p, hence in particular k /∈ p) then if x /∈ Sp(0) we would have
kn ∈ Sp(0) (for some n ∈ N) hence kn ∈ p, which is absurd. Therefore, x ∈ q and thus Sp(0) ⊆ q, as desired.

Exercise 10, (ii) now guarantees that Sp(0) is p-primary. Note that the above conditions imply that

Sp(0) = q1 ∩ q2 ∩ . . . qn,

where qi, 1 ≤ i ≤ n are the p-primary ideals of A.
This fact implies that a, as defined in the exercise, is contained in all the prime ideals of A (since it’s

contained in all p-primary ideals, in particular in p), therefore it’s also contained in their intersection, the
nilradical of A.

The last part of the problem follows easily:

0 =
⋂

r(qi=pi)

qi,

where the intersection runs over all the minimal ideals of A (and note that this is a minimal primary
decomposition), if and only if all the prime ideals associated with 0 are minimal, which means that 0
contains only isolated ideals.

4.12

By definition, S(a) = (S−1a)c. We thus have the following (we use freely the results of chapter 1, proposition
1.18):

(i) S(a) ∩ S(b) = (S−1a)c ∩ (S−1b)c = (S−1(a ∩ b))c = (S−1a ∩ S−1b)c = S(a ∩ b), the last equality
following from the commutativity of the S−1 functor with most reasonable operators.

(ii) This second result follows similarly since all the operators commute.
(iii) We see that S(a)c = (1) if and only if S−1a = (1), and that’s equivalent to a ∩ S 6= ∅.
(iv) The last property follows from the canonical identification φ : S−1

1 (S−1
2 A) −→ (S1S2)−1A given by

(a/s1)/s2 7→ a/s1s2. This is, in fact, an isomorphism and yield the desired result.
If a has a primary decomposition and S is any multiplicatively closed subset of A, then

S(a) =
n⋂

i=m+1

qi,

where qi, 1 ≤ i ≤ n, are those primes associates of a whose radicals don’t meet S (by proposition 4.9).
Therefore, the number of discrete sets if the form S(a) is at most 2n; in particular, it’s finite.
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4.13

(i) Notice that by exercise 4.11, the ideal Sp/pn(0) is primary in A/pn, because r(pn) = p, hence p is a
minimal prime over pn. Contracting Sp/pn(0) to A, yields that A is p-primary.

(ii) Since p is minimal over p, this follows from corollary 4.11.
(iii) Since p is minimal over p(m)p(n), corollary 4.11 yields again that Sp(p(m)p(n)) is the p-primary

component of p(m)p(n). It remains to be shown that p(m+n) = Sp(p(m)p(n)). We easily observe that pm+n =
pmpn ⊆ p(m)p(n) implies p(m+n) ⊆ Sp(p(m)p(n)).

Conversely, let x ∈ Sp(p(m)p(n)). Then, there exists s ∈ p such that sx =
∑′
i xiyi, with xi ∈ p(m), yi ∈

p(n). So, in turn for each i there are si, ti ∈ Sp such that sixipm, tiyi ∈ pn. Then,

s(
∏
j

sj)(
∏
k

tk)x = (
∏
j

sj)(
∏
k

tk)
∑
i

xiyi ∈ pmpn = pm+n,

therefore x ∈ Sp(pm+n) = p(m+n)S. This completes the proof.
(iv) If p(n) = pn, then pn is primary, by question (i). Conversely, if pn is primary, then pn = pn is a

primary decomposition of pn, and its p-primary component pn is equal to p(n), by question (ii).

4.14

If p is prime, then it’s obviously going to be a prime ideal associated with a. Without loss of generality, assume
a = 0, by passing on to A/a (note that if the image p of p through the natural projection π : A −→ A/a is
prime in A/a, then its contraction p will be prime in A). Now, assume that p = (0 : x) = Ann(x). Given
a /∈ Ann(x), we notice that Ann(x) = Ann(ax), since Ann(x) ⊆ Ann(ax) and Ann(x) is maximal among
annihilators of elements of A. But then, if yz ∈ Ann(x), and y /∈ Ann(x), we would have Ann(xy) = Ann(x).
The equation 0 = (yz)x = z(xy) implies z ∈ Ann(xy) = Ann(x). Hence, p = Ann(x) is prime and this
completes the proof.

4.15

Assume that the primary decomposition of a is

a = q1 ∩ q2 · · · ∩ qn,

where r(qi) = pi and p1, p2, . . . , pm constitute the isolated part of a (these are minimal). It’s easy to observe
that the set of all such f ’s (with the notation of the problem) is exactly the set (qm ∩ qm+1 · · · ∩ qn)− (q1 ∩
q2 · · · ∩ qm−1) and thus qΣ = Sf (a) by proposition 4.9. The second equality Sf (a) = (a : fn) follows directly
from the selection of f .

4.16

By proposition 4.9, any ideal of the form S−1a has primary decomposition

S−1a =
m⋂
i=1

S−1qi

if

a =
n⋂
i=1

qi

and p1, p2, . . . , pm (r(qi) = pi) are the primary ideals belonging to a that don’t meet S. But all ideals of
S−1A are of this form for some a that doesn’t meet S, so in particular all ideals of S−1A will have primary
decomposition if all ideals of A do.
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4.17

We will essentially repeat the hint of the book; it constitutes a full solution. Let a be an ideal of A and let p1

be a minimal prime ideal that contains a. Then, by exercise 11, q1 = Sp1(a) is p1-primary and q1 = (a : x)
for some x ∈ A − p1. Now, certainly a ⊆ q1 ∩ (a + (x)); conversely, if y = a + tx ∈ a + (x) also belongs to
q1, then reducing modulo p1, we obtain tx = 0 in A/p1, hence (given x /∈ p1) t ∈ p1 = r(q1) = (a : x), hence
tx ∈ a, which means a+ tx ∈ a. Therefore, a = q1 ∩ ((a) + (x)).

Now let a1 be a maximal ideal of the set of ideals b that contain a and satisfy a1 ∩ b = a and choose
a1 so that x ∈ a1 hence a1 * p1. Repeating the construction with a1 and so on yields (at the nth step)
a = q1 ∩ q2 ∩ . . . qn ∩ an, where the qi are primary ideals and an is maximal among the ideals b that contain
an−1 = an ∩ qn. This implies that a = q1 ∩ q2 ∩ · · · ∩ qn ∩ bn, and an * pn. If at any stage we have an = (1),
then the process stops and a is the finite intersection of primary ideals. Otherwise, the process continues to
yield new ideals and, as n −→∞, an becomes ’arbitrarily small’, in the sense that an−1 ⊆ an.

4.18

We have the following:
(i) ⇒ (ii) If every ideal a has primary decomposition, then the number of ideals of the form S(a), where

S is a multiplicatively closed subset of A, is finite (by exercise 12), therefore A satisfies property (L2). A
also satisfies (L1); for the proof of this, note that S ⊆ S′ (where S, S′ are multiplicatively closed subsets of
A) implies S′(a) ⊆ S(a), hence if S1 ⊇ S2 ⊇ · · · ⊇ Sn implies S1(a) ⊇ S2(a) ⊇ · · · ⊇ Sn(a) and any such
decreasing sequence has Sf (a) as a lower bound (we adopt the notation of exercise 15 here; we can always
pick a suitable f , according to the solution of that exercise). Therefore, by Zorn’s lemma, it must terminate
and this completes the proof.

(ii)⇒ (i) Conversely, if A satisfies (L1) and (L2), then a is the intersection of a possibly infinite number of
primary ideals by exercise 17. With the notation of the proof of exercise 17, Sn = Sp1 ∩ · · · ∩Spn necessarily
meets an (since an * pn = A − Spn

), therefore Sn(an) = (1), hence Sn(a) = q1 ∩ · · · ∩ qn. This implies
that {Sn}n∈N is a decreasing sequence of multiplicative subsets of A. By property (L2), this sequence must
terminate and then an = (1), which implies that a has a primary decomposition, as desired.

4.19

The first part of the problem follows from the second paragraph of problem 11. For the second part, we will
merely repeat the hint of the book; it constitutes a full solution and an elegant one at that. We will proceed
by induction; for n = 1, the statement is trivial, because p1 is obviously a p1-primary ideal. Assume that
the result holds for n− 1 and let without loss of generality pn be maximal in the set {p1, p2, . . . pn}. By our
inductive hypothesis, there is an ideal b and a minimal decomposition b = q1 ∩ q2 ∩ · · · ∩ qn−1, such that
each qi is pi-primary. If b ⊆ S)pn(0) and p were any minimal ideal contained in pn, then Spn

⊆ Sp(0), which
implies b ⊆ Sp(0). Taking the radicals of both sides yields q1 ∩ q2 ∩ · · · ∩ qn−1 ⊆ p, hence pi ⊆ p, for some
1 ≤ i ≤ n by chapter 1, hence pi = p by the minimality of p. But this is a contradiction, since p may be
minimal, but no pi is supposed to be. This implies that b * Spn(0) and therefore there is a pn-primary ideal
qn such that b " qn. This implies that a = b ∩ qn has associated prime ideals exactly the {p1, p2, . . . , pn},
and this decomposition is minimal; this completes the inductive step and the proof.

Primary decomposition of Modules

4.20

We observe that x ∈ rM (N) if and only if xqM ⊆ N for some positive integer q; this is equivalent to
x ∈ (N : M) and xq ∈ Ann(M/N), which yields that

rM (N) = r(N : M) = r(Ann(M/N)).
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In particular, rM (N) is an ideal.
Now the formulas analogous to (1.13) can be easily generalized and proved in the case of rM .

4.21

It’s easy to show that if the module Q is primary in M , then (Q : M) is a primary ideal of A, hence rM (Q)
is a prime ideal p (the proof is exactly the same as in the case of ideals). Similarly, we can show the analog
of lemma (4.3): if the modules Qi, 1 ≤ i ≤ n, are p-primary in M , then so is their intersection as well as the
analog of lemma (4.4): Let Q be a p-primary module in M and x an element of M . Under these conditions:

(i) if x ∈ Q, then (Q : x) = M
(ii) if x /∈ Q, then (Q : x) is p-primary, and therefore r(Q : x) = p

4.22

Again, the proof that in a minimal decomposition

N =
n⋂
i=1

Qi

of modules the ideals pi = rM (Qi) depend only on N , follows closely the proof for the special case of ideals.

4.23

As before, propositions (4.6)-(4.11) inclusive can be shown using exactly the same arguments that are used
for the special case of ideals; these proofs are given in the book.
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Chapter 5

Integral Dependence and Valuations

5.1

Any prime ideal q of f(A) will be of the form f(p), where p = qc is prime in A. The integrality of B
over f(A) implies, by theorem 5.10, that any prime ideal of f(A) can be decomposed as q ∩ f(A); the
converse, namely that any ideal of that form is prime, is also trivially true. Therefore, if V (b) is any closed
subspace of Spec(B), then f∗(b) = V (bc) which is closed in Spec(A). This shows that the induced mapping
f∗ : Spec(B) −→ Spec(A) is a closed mapping.

5.2

We can factor f : A −→ Ω through the natural projection map π : A −→ A/p, where p = ker f is prime
(it’s the contraction of the prime ideal (0) of Ω) and then through the inclusion of the integral domain A/p
into its field of fractions K(A/p) and the inclusion of that into Ω (obviously K(A/p) will be a subfield of
Ω). On the other hand, by the Lying-Over Lemma, there is a prime ideal q of B, whose contraction in A is
p and moreover B/q is integral over A/p. Embedding B/q to its field of fractions K(B/q), we obtain that
L will be algebraic over K; this is so because B/q is integral over A/p. Now it suffices to extend the map
K(A/p) −→ Ω to K(B/p) −→ Ω.

This is done in the standard fashion, as follows: if k ∈ K(B/q), let p ∈ K(A/p)[x] be the minimal
polynomial that vanishes at k; this induces a polynomial h(x) ∈ Ω[x] by pushing the coefficients into Ω via f .
This polynomial has a root, denote it by f(k) (its the image of k under the extended map f : K(B/q) −→ Ω).
Note in particular that f remains injective (it’s the extension of the final inclusion map).

We repeat the process and thus produce a collection {(E, f) : K(A/p) ≤ E ≤ K(B/q), f |K A/p = f} to
which we can extract a maximal element by a Zorn’s lemma-type argument; call its domain E0. We claim
that E0 = K(B/q). Indeed, K(B/q) is algebraic over E0, so if the inclusion were strict, then we would be
able to extend fE0

to E0(k), where k ∈ K(B/q)− E0, a contradiction. This completes the proof.

5.3

Since the integral elements of a ring over a subring constitute a ring (corollary 5.3) and the generators
of B′ ⊗A C are the elements of the form b′ ⊗A c, we merely need to show that b′ ⊗A c is integral over
(f ⊗A 1)(B′ ⊗A C). Indeed, if b′ ∈ B′ satisfies the following integral equation over f(B):

b′n + f(bn−1)b′n−1 + · · ·+ f(b1)b′ + f(b0) = 0,

then we observe that b′ ⊗A c satisfies the equation

(b′ ⊗A c)n + (f(bn−1)⊗ c)(b′ ⊗ c)n−1 + · · ·+ (f(b1)⊗ cn−1)(b′ ⊗A c) + f(b0)⊗A cn = 0

over (f ⊗A 1)(B′ ⊗A C); this completes the proof.

37
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5.4

We merely repeat the counterexample constructed in the hint; consider the subring k[x2 − 1] of k[x], where
k is a field, and let n = (x− 1). Then, the restriction m of n to A is (x2− 1). Were Bn integral over Am, the
element 1

x+1 would satisfy an equation of the form:

1
(x+ 1)n

+
n−1∑
m=0

gm(x2 − 1)
km(x2 − 1)(x+ 1)m

= 0,

where the km are polynomials in x2 − 1 that don’t vanish at ±1 . Multiplying both sides of the equation by
(x+ 1)n−1, and then letting x = −1 yields a contradiction.

5.5

We have the following:
(i) Assume that u ∈ B is the inverse of x ∈ A and let un + an−1u

n−1 + · · · + a0 = 0 be the equation
over A that u satisfies. Multiplying both sides by xn−1 yields u = −(an−1 + an−2x+ · · ·+ a0X

n−1) ∈ A, as
desired.

(ii) If m is a maximal ideal of A, then Theorem 5.10 implies that there is a maximal ideal e of B such
that m = e ∩ A; the converse, namely that any ideal of such form will be maximal, is obviously true. This
clearly yields that JA = B ∩A, as desired.

5.6

If B1, B2, . . . , Bn are all integral A-algebras, with corresponding mappings fI −→ A, then fi(A)
int.
⊆ B and

therefore given any xi ∈ Bi, fi(A)[x] is a finitely generatedBi-module. This implies that, (f1(A)[x1], f2(A)[x2], . . . , f2(A)[x2])
is a finitely generated A-module (the number of its generators will equal at most the sum of the numbers of
generators of the fi(A), which is finite). Therefore,

∏
Bi is an integral A-algebra, as desired.

5.7

Assume that B −A is multiplicatively closed, but A is not integrally closed in B; let C then be its integral
closure in B. Given any element y ∈ C − A, let n be the minimal degree of all polynomials in A[x] that y
satisfies; note that n ≥ 2, since y /∈ A. Then, if yn + an−1y

n−1 + · · ·+ a0 = 0, where ai ∈ A for 0 ≤ i ≤ n,
we observe that

yn−1 + an−1y
n−2 + · · ·+ a1 /∈ A,

by the minimality condition on n and since y /∈ A, we obtain

y(yn−1 + an−1y
n−2 + · · ·+ a1) /∈ A,

by the multiplicative closure of B −A. However,

y(yn−1 + an−1y
n−2 + · · ·+ a1) = −a0 ∈ A,

which is absurd. Therefore, A is integrally closed in B.

5.8

We have the following:
(i) We will merely repeat the hint of the book; it constitutes a full proof. Let L ⊇ B be a field in

which f, g split into linear factors; say f =
∏

(x − ξi), g =
∏

(x − ηj). Then, the roots ξi, ηj are integral
over C, hence so are the coefficients of f, g (because the integral closure of A is a subring of B). Since the
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coefficients also belong to B, they must necessarily belong to C (because it’s integrally closed in B) and thus
f ∈ C[x], g ∈ B[x].

(ii) In this case, the only thing that needs to be shown is that there exists, in fact, a field extension of the
general ring B, in which f, g split into linear factors. We will just sketch the construction, which is identical
to the one for fields. For that, we will perform induction on the degree of f . If deg(f) = 1, the claim is
true. Assume it holds for some degree n and consider the ring D = B[t]/(f), where (f) is the principal ideal
generated by f in B[t]. Then, we can embed B[t] naturally into D, by mapping any h(t) ∈ B[t] to its class in
D. In particular, the image t of t ∈ B[t] will be a root of f in D, hence f(x) = (x− t)f1(x). The polynomial
f1(x) will have degree n−1 and by our inductive hypothesis it will split into linear factors in some extension
E of D; by the relation f(x) = (x− t)f1(x), so will f . This completes the proof.

5.9

Again, we will merely repeat the hint of the book, which constitutes a full proof. Let f be integral over A[x];
it will satisfy a relation of the form:

fm + g1f
m−1 + · · ·+ gm = 0,

where the gi are elements of A[x], of course. Then, let r be a positive integer greater than the degrees of all
the gi and m; put f1 = f − xr, so that

(f1 + xr)m + g1(f1 + xr)m−1 + · · ·+ gm = 0,

or rather
fm1 + h1f

m−1
1 + · · ·+ hm = 0;

here, hm = (xr)m + g1(xr)m−1 + · · ·+ gm ∈ A[x]. This implies that f1(fm−1
1 +h1f

m−2
1 + · · ·+hm−1) ∈ A[x]

and thus exercise 8 implies that f1 ∈ C[x]. Since f was an arbitrary integral element of B, this deduction
shows that C[x] is the integral closure of A[x] in B[x], as desired.

5.10

Under the conditions of the problem, we have the following:
i)
(a) ⇒ (c) If f∗ : Spec(A/p) −→ Spec(B/q) is a closed mapping, then given p = qc as in (c), the closed

set Spec(A/p) = V (p) will be identified with the closed set V (pe) = V (q) = Spec(B/q).
(b) ⇒ (c) If p ⊆ n inside Spec(A/p), then, the going-up property is equivalent to the existence of m that

contains q = pc, such that mc = n, or equivalently f∗(m) = n, or equivalently f∗ : Spec(A/p) −→ Spec(B/q),
or equivalently to the surjectivity of f∗.

(c) ⇒ (b) Since we can obviously reduce the proof of the going-up property to the case of a chain of
ideals of length 2 (as in its proof in the book), the argument above shows this direction too.

ii)
(a’) ⇒ (c’) This is the dual of the ’(a) ⇒ (b)’ statement above; we can thus prove it in exactly the same

fashion, reversing the arrows and substituting Spec(B/q),Spec(A/p) with Spec(Bq),Spec(Ap) respectively.
(b’) ⇒ (c’) This is the dual of the ’(b) ⇒ (c)’ statement above; we can thus prove it in exactly the same

fashion, reversing the arrows.
(c’) ⇒ (b’) This is the dual of the ’(c) ⇒ (a)’ statement above; we can thus prove it in exactly the same

fashion, reversing the arrows.

5.11

Since f : A −→ B is flat, the induced map f∗ : Spec(Bq) −→ Spec(Aq) is surjective (where q is a prime ideal
of B and p is an ideal of A that lies over it in A), by chapter 3, exercise 18. Therefore, by exercise 10, f has
the going-down property.
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5.12

It’s obvious that A is integral over AG; for, given a ∈ A, a is a root of the monic polynomial P (x) =∏
σ∈G(x− σ(a)). We see that P (x) ∈ AG[x], since any automorphism of G acts as the identity on it, hence

every coefficient must belong to AG.
The obvious extension of the action of G on A to an action on S−1A is given by σ(a/s) = σ(a)/σ(s), for

every σ ∈ G. Note that this is well-defined by the σ(S) ⊆ S condition.
Finally, given any element a/s ∈ (S−1A)G, we define a map φ : (S−1A)G −→ (SG)−1AG by letting

a/s 7→ Σ(a)/Σ(s), where Σ = σ1 ◦ σ2 ◦ · · · ◦ σn (we assume G = {σi}1≤i≤n). We see that this map is well
defined (Σ(aΣ(s)) being stable under G), and it’s furthermore surjective (any element a/s gets hit my its
image) and injective (because of our definition of Σ, we will have Σ(a/s) = Σ(a)/Σ(s), whence injectivity).
This completes the proof that φ is an isomorphism.

5.13

Let p1, p2 ∈ P and let x ∈ p1. Then, ∏
σ∈G

σ(x) ∈ (p1 ∩AG) = p,

since id ∈ G and
∏
σ σ(x) is invariant under G, hence σ(x) ∈ p2 for some σ ∈ G. Therefore,

p1 ⊆
⋃
σ∈G

σ(p2),

which implies that p1 ⊆ σ(p2), for some σ ∈ G (since the σ(p2) are prime). But since A is integral over AG

(by the previous exercise), and p1, σ(p2) both contract to p, they must coincide, by (5.9). This implies that
G acts faithfully, as desired.

In particular, the set of ideals that contract to p is finite.

5.14

Note first of all that G is be a finite group (its order is equal to the degree of the extension L/K). It’s
obvious that B ⊆ σ(B), since id ∈ G. Conversely, if b ∈ B, then σ(b) ∈ B, since σ(b) ∈ L is necessarily
integral over A (since it’s the identity on K, by the definition of the Galois group). Therefore, σ(B) = B.

Now, obviously AsubseteqBG, and if b ∈ BG, then b satisfies the following monic polynomial in K[x]:∏
σ∈G

(x− σ(b)),

which implies that b is integral in K over A, hence, since the integral closure of A in K is itself, we conclude
that BG ⊆ A, hence the two sets are equal, as desired.

5.15

We distinguish two cases, as in the book’s hint. If L is a separable extension over K, then we may embed it
in a finite normal separable extension N of K. In this case, the tower K ⊆ L ⊆ N of fields yields that the
number of prime ideals q of B which contract to p in BG = A (this last equality is true by exercise 14) is
finite, by exercise 13. In the case L is purely inseparable over K, then any ideal q of B such that q ∩A = p
is in fact equal to the set {x ∈ B : xp

m ∈ p for some m ≥ 0}. Since q is uniquely defined in this case, we see
that the induced map is bijective. Hence all fibres have one element; in particular, they are finite.

Noether’s normalization lemma
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5.16

We will merely repeat the hint of the book; it constitutes a full proof. For this reason, we also assume that
k is infinite. Let x1, x2, . . . , xn generate A as a k-algebra. By renumbering the xi’s, if necessary, we may
assume that x1, x2, . . . , xr are algebraically independent over k and each of the xr+1, . . . , xn are algebraic over
k[x1, x2, . . . , xr]. Now we apply induction to the difference n−r; if n = r, then there is nothing to be shown,
so assume that the proposition holds for n−1 generators and n > r. In this case, the generator xn is algebraic
over k[x1, . . . , xn−1], hence there exists a polynomial f with coefficients in k such that f(x1, x2, . . . , xn) = 0.
We may of course assume that the homogeneous part F with the largest degree d of f is monic in the last
argument (xn), because, since k is infinite, there are λ1, λ2, . . . , λn−1 ∈ k such that F (λ1, λ2, . . . , 1) 6= 0,
and this will be the coefficient of xn in F so we may divide by it. Putting x′i = xi − λixn, we obtain from
F a monic polynomial in k[x′1, x

′
2, . . . , x

′
n−1] that vanishes at xn, hence A = k[x1, x2, . . . , xn] is integral over

A′ = k[x′1, x
′
2, . . . , x

′
n−1]. Now the inductive hypothesis yields y1, y2, . . . , yr−1 such that A′ is integral over

the k-algebra they generate, hence putting yr = xn, we obtain the desired result.
From the proof it now follows that we may choose the yi to be linear combinations of the xi. If k is

algebraically closed and X is an affine algebraic variety in kn with coordinate ring A 6= 0, then there exists
a linear subspace L of dimension r in kn and a linear mapping kn � L, which maps X onto L (we begin
with the natural surjective map X � L and extend it using exercise 2, to a map kn � L).

Nullstellensatz, weak form

5.17

We will merely reproduce the hint of the book; it constitutes a full proof. Let, under the conditions of
the problem, A = k[t1, t2, . . . , tn]/I(X) and note that A is a non-empty finitely generated k-algebra. By
Noether’s normalization lemma (exercise 16), there is a linear subspace L = k[y1, y2, . . . , yr] of dimension at
least 0 in kn, and a mapping of X onto L. In particular, X 6= ∅, as desired.

We will now derive that every maximal ideal of A = k[t1, t2, . . . , tn] is of the form m = (t1 − a1, t2 −
a2, . . . , tn − an). Let m be a maximal ideal of A and let Vm be the variety it defines. Then, if I(Vm) is the
ideal of that variety, the strong Nullstellensatz implies that I(Vm) = r(m) = m 6= (1); the previous statement
implies Vm 6= ∅. If (a1, a2, . . . , an) ∈ Vm, then the previous relation implies that m ⊆ t1−a1, t2−a2, . . . , tn−
an), which is absurd, lest m = (t1 − a1, t2 − a2, . . . , tn − an). This completes the proof.

5.18

Let x1, x2, . . . , xn generate B as a k-algebra. We will proceed by induction on n. If n = 1, then the result
is obvious since B is a field. Therefore assume n > 1 and that the result holds for n − 1 generators. Let
A = k[x1] and let K = k(x1) be the field of fractions of A. Then, by the inductive hypothesis, B is a
finite algebraic extension of K, therefore, the generators x− 2, x3, . . . , xn satisfy monic polynomial algebraic
equations in K; the coefficients of those polynomials will be of the form a/b, where a, b ∈ A. If f is the
product of all the denominators b, the x2, x3, . . . , xn are all clearly integral over Af . Hence B and therefore
K are integral over Af .

Now if x1 were algebraic over k, then, since A is a Unique Factorization Domain, A is integrally closed (if
p is a prime ideal in A, then unique factorization implies in particular that no prime ideals q in the integral
closure of A could be such that q∩ (1) = p, which happens by Lying Over in the case A is not closed). Hence
Af is also integrally closed and therefore Af = K, an absurdity. Therefore, x1 is algebraic over k, hence K
(thus B, too) are algebraic over k. We conclude that B is a finite algebraic extension of k, as desired.

5.19

We already used the Nullstellensatz in our solution of exercise 17.
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5.20

Let S = A−{0} and let K = S−1A be the field of fractions of A. Since B is a finitely generated algebra over
A, we may write B = A[b1, b2, . . . , bm], and this implies that S−1B = K[b1, b2, . . . , bm] is a finitely generated
algebra over K. By the Noether Normalization Lemma, there exist y1/s1, y2/s2, . . . , yn/sn ∈ S−1B that
are algebraically independent over K and are such that S−1B is integral over K[y1/s1, y2/s2, . . . , yn/sn].
It’s now easy to see that y1, y2, . . . , yn are algebraically independent over K and S−1B is integral over
K[y1, y2, . . . , yn]. The fact that b1, b2, . . . , bm ∈ B ⊆ S−1B are integral over K[y1y2, . . . , yn] implies that
there are equations

bri
i +

a(i,1)

s
+ · · ·+

a(i,ri)

s
= 0,

where a(i,j) ∈ B′ = A[y1, y2, . . . , yn] and s ∈ S for all 1 ≤ i ≤ m (note that we can reduce all the
denominators to the same s ∈ S). Clearly, the above equations imply that b1, b2, . . . , bm are all integral over
B′s. We conclude that Bs is integral over B′s, as desired.

5.21

With the notation of exercise 20, we may first extend f to all of B′, e.g. by sending yi 7→ 0, then to B′s,
since f(s) 6= 0 and finally to Bs, by exercise 2.

5.22

We will merely repeat the book’s hint; it constitutes a full proof. Assuming that JA = 0 and given any
v ∈ B, we wish to construct a maximal ideal of B that doesn’t contain v. By applying exercise 21 to the
ring Bv and its subring A (we use the usual embedding A −→ Bv and this is injective, because A is an
integral domain) we obtain an s ∈ A − {0} such that, if Ω is an algebraically closed field and f : A −→ Ω
doesn’t vanish at s, then f can be extended to a homomorphism B −→ Ω. Let m be a maximal ideal of A
such that s /∈ A, and let k = A/m be the residue field. Then, the canonical projection A −→ k extends to a
homomorphism g : Bv −→ Ω, where Ω is the algebraic closure of k (this follows, of course, by the was s 6= 0
was chosen). By proposition 5.23, g(v) 6= 0 and n = ker(g) ∩ B is necessarily a maximal ideal in B (since
ker(g) is maximal and g∗ is always a continuous map). The ideal n we constructed doesn’t contain v, and
this completes the proof.

5.23

We have the following:
(i) ⇒ (ii) Let f : A −→ B be a surjective homomorphism; then all the prime ideals of B will be given

by intersections of maximal ideals of (since f∗ : Spec(B) −→ Spec(A) is continuous and maximal ideals
correspond to closed sets). This implies that the nilradical of B is contained in its Jacobson radical, and the
converse is always true. Thus RB = JB in every homomorphic image of A.

(ii) ⇒ (iii) Let p be any prime but not maximal ideal of A and let B = A/p (which is of course a
homomorphic image of A under the natural projection). Then, the Jacobson radical of B will equal the
nilradical of B, which is 0. Since the Jacobson radical of B is merely the intersection of the images of all
maximal ideals of A that contain p strictly, we may pull back to A, to obtain that p is equal to the intersection
of all prime ideals that contain it strictly (we substituted maximal by prime because we are considering only
the intersection of the ideals involved).

(iii) ⇒ (i) Assume that there is a prime ideal p of A, which is not the intersection of maximal ideals, and
let B = A/p. Then, B is an integral domain and its zero ideal is not the intersection of maximal ideals; in
particular, its Jacobson radical is nonzero. Pick f 6= 0 a non-zero element of JB . Then, Bf is a non-zero
ring, since f is nonzero and if m is any maximal ideal of Bf , then q = m ∩ B is a prime ideal of B, which,
however, is not maximal (otherwise f would be an element of q). Moreover, by this construction, every
prime ideal of B that meets q, also meets the multiplicatively closed set {fn}n≥0, and so contains f . This
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mean that f is contained in the intersection of all ideals that contain q strictly. But condition (iii) implies
that q is equal to the intersection of all maximal ideals that contain it strictly, a contradiction, as desired.

5.24

We have the following:
(i) If B is integral over A, then passing to A/RA, we may assume that RA = JA = 0. Now, by integrality,

JB = A ∩ JA, hence RB ⊆ JB = 0 implies JB = RB , or that B is a Jacobson ring, as desired.
(ii) If B is a finitely generated A-algebra, then by passing to A/RA, where RA is the nilradical of A, we

may assume that RA = JA = 0. Then, exercise 22 yields that RB ⊆ JB = 0, hence B is Jacobson too, as
desired.

In particular, every finitely generated ring and every finitely generated algebra over a field is a Jacobson
ring.

5.25

We have the following:
(i)⇒ (ii) Without loss of generality, we may assume that A is a subring of B (since if B ∩A ⊆ A is finite

over A, then so will B be, since as a field it is a finite algebraic extension of A). Applying exercise 21 yields
some s ∈ A such that if f : A −→ Ω is a homomorphism which doesn’t vanish at s, then f can be extended
to a homomorphism B −→ Ω. There exists a maximal ideal m of A such that s /∈ m and the canonical
projection A −→ A/m = k extends to a map g : B −→ Ω, where Ω is the algebraic closure of k. Since B is
a field, g is injective and g(B) is algebraic over k, hence finite algebraic over k, by the Nullstellensatz. But
B ' g(B), which completes the proof.

(ii) ⇒ (i) Let p be a prime ideal of A which is not maximal, and let B = A/p. Let f be a non-zero
element of B; then, Bf is a finitely generated A-algebra (since B is). If it were a field, then it would be
finite over B, hence integral over B, hence B would be a field by the Nullstellensatz, a contradiction. Thus
Bf is not a field and therefore it has some proper prime ideal p. It’s contraction in B is a non-zero ideal p′

such that f /∈ p′. Since f ∈ A− p was arbitrary, we conclude that the intersection of all maximal ideals that
contain p is contained in p and this obviously implies the equality of the two sets.

5.26

First we prove the topological equivalences:
(1) ⇒ (2) Since E is closed, E ∩X0 ⊆ E. Conversely, if x ∈ E, then any open neighborhood U of x

meets E ∩X0 (it meets E at x and since U = U ∩ {x}, it also meets X0). This implies x ∈ E ∩X0, hence
the desired equality.

(2) ⇒ (3) The map U −→ U ∩ X0 is surjective, by the definition of the subspace topology, and it’s
surjective, because U1 ∩X0 = U2 ∩X0 implies U1 − U2 = (U1 − U2) ∩X0 = ∅.

(3) ⇒ (1) If the above map is bijective, then we easily see that for every proper open (resp. closed)
set G (resp. F ) G ∩ X0 6= ∅, X (resp. F ∩ X0 6= ∅, X). Therefore, if L = F ∩ G is any locally closed
subset of X, then the proper subspace U ∩ X0 of U , locally satisfies condition (3), therefore in particular
the intersection of the set (F ∩ U), which is closed in U , with U ∩ X0 is non-empty. But then we have
∅ 6= (F ∩ U) ∩ (U ∩X0) = L, and this yields the desired result.

A subset X0 of X that fulfills these conditions is called very dense.
For the algebraic equivalences, we have:
(i) ⇒ (ii) Let L be any locally closed set in Spec(A). This can be precisely characterized as the set of

prime ideals of A that contain some fixed ideal α of A but do not contain some fixed a ∈ A. Passing on to
A/α, we may assume that α = 0. Since A 6= ∅ (this is where the condition f /∈ p for all p ∈ L comes in), A
will have a maximal ideal m, Pulling back to our original A, we see that m ∈ L and this implies that the set
of all maximal ideals of A is very dense in Spec(A).
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(ii) ⇒ (iii) This direction is obvious, since the single point-set must meet the set of all maximal ideals,
which are of course the closed points in Spec(A).

(iii) ⇒ (i) Let p be any prime ideal which is not maximal; this will correspond to a point in Spec(A),
which, as a set, is not closed. The intersection of all maximal ideals of A that strictly contain p also contains
p. If the converse were not true, then there would be a non-empty set F ⊆ A such that F is contained in
any maximal ideal m of A which contains p, but F is not contained in p. But then, {p} in Spec(A) would
be equal to the locally closed set XF ∩ p, which, since it consists of one point only, should be closed, an
absurdity. This shows that A is Jacobson, as desired.

Valuation rings and valuations

5.27

Since intersection of sets is associative, a typical Zorn’s lemma argument shows that Σ indeed has maximal
elements with respect to domination; let A be one of them. We claim that A is a valuation ring of K and
conversely. Indeed, if A is a ring maximal with respect to domination, then A is maximal in the sense of
theorem 5.21, if we let (A, f) be the pair of A together with its embedding in K = Ω. Conversely, if A is a
valuation ring, then it’s maximal in the sense described above; we claim that it’s also maximal with respect
to domination. Indeed, if A ⊇ B and mA ⊆ mB , then, since mB ⊆ mA, we must have mA = mB . This,
however implies that all the elements of B −A are units in B but not in A with their inverses in B but not
in A; this contradicts the fact that A is a valuation ring of K ⊇ B ⊇ A, hence if a k ∈ B, then k ∈ A or
k−1 ∈ A.

5.28

We have the following:
(1) ⇒ (2) Let a, b be two proper ideals of the valuation ring A ⊆ K. If none of them were included in

the other, then there would be α ∈ a, β ∈ b such that α /∈ b, β /∈ a. Since A is a local ring, we will have
k = αβ−1 ∈ A or k′ = α−1β ∈ A; assume without loss of generality the former. Then, α = kβ ∈ b, a
contradiction.

(2) ⇒ (1) Consider the set {a∪ {0}}, where a runs over all the ideals of A, of subrings of K; this will be
totally ordered by set inclusion ⊆ and the inclusion maps a ∪ {0} −→ K yield a set Σ analogous to the one
constructed in page 65. A maximal element of that is clearly A itself, and therefore, by theorem 5.21, A will
be a valuation ring of K.

We deduce that if p is a prime ideal of A, then, Ap and A/p are valuation rings of their respective fields
of fractions, since the second condition continues to hold after modding out by p or localizing at p.

5.29

We will assume that the phrase A ⊆ B is a local ring of B means: A is a local ring and so is B and their
unique maximal ideals coincide. Now, with the notation of the problem, let A ⊆ B ⊆ K be an intermediate
ring. Since A is a valuation ring of K (hence it’s local, with maximal ideal mA), B will be a local valuation
ring of K, too, by proposition 5.18; let mB be its unique maximal ideal. Obviously mA ⊆ mB (by the
valuation conditions) and if there were x ∈ mB − mA, then x would have to be a unit in A, but a non-unit
in B, a contradiction. Thus mA = mB , as desired.

5.30

We first note that the relations defined induce an ordering of Γ; indeed, ξ ≥ ξ, ξ ≥ η, η ≥ ξ implies that
ξ−1η ∈ U and therefore ξ = η, and finally ξ ≥ η, η ≥ ω obviously implies ξ ≥ ω. Since A is also a valuation
ring, the ordering described above is also total, in the sense that for any ξ, η ∈ Γ, ξ ≥ η or η ≥ ξ. This
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structure is compatible with the group structure, since ξ ≥ η ⇒ ξω ≥ ηω, for all ω ∈ Γ. Hence Γ is a totally
ordered abelian group, the value group of A.

Letting v : K∗ −→ Γ be the natural projection homomorphism, and keeping the previous notation, we
would like to show that (x+ y)y−1 ∈ A or (x+ y)x−1 ∈ A; this just follows from the definition of valuation
rings.

5.31

We will rather consider the set A = {x ∈ K∗ : v(x) ≥ 0} ∪ {0}, so that A is actually a ring. Conditions (1)
and (2) imply that A is closed with respect to multiplication and addition and A is an integral domain, since
all its elements belong to the field K. Note that x = y = 1 in (1), yields v(1) = 0, therefore, v(x) = v(x−1)
for all x ∈ K. This implies that ifv(x) ≥ 0 or v(x) ≤ 0, thus x ∈ A or x−1 ∈ A. Hence A is a valuation ring
(the valuation ring of v) of K. The subgroup v(K∗) of Γ is the value group of v.

5.32

It’s obvious that v(A − p) = {v(a) : a /∈ p}, and this is an isolated component ∆ of Γ (this is where the
primality of p comes in). The mapping from Spec(A) into the set of isolated components of Γ is obviously
injective; the surjectivity follows from the inverse construction of exercise 30.

5.33

The group algebra A is an integral domain, because writing two non-zero elements as below u = λ1xα1 +
· · ·+ λnxαn

, u′ = λ′1xα′1 + · · ·+ λ′nxα′n and multiplying them yields that the two terms of lowest degree will
yield the term of lowest degree in the product uu′. Since k is an integral domain, the coefficient of that term
will be non-zero, hence so will the whole product be. This shows that the group algebra k[Γ] over an integral
domain is always an integral domain.

If we write an arbitrary u ∈ k[Γ] in the form u = λ1xα1 + · · ·+λnxαn , where λi ∈ k−{0} and αi < αi+1

for all i, and then define a mapping v : A− {0} −→ Γ by letting u(v) = α1, we see that:
(a) v is a homomorphism, namely v(xy) = v(x) + v(y).
(b) v(x+ y) ≥ min(v(x), v(y)), as desired.
Now, if K is the field of fractions of A, then we may uniquely extend it to K = (A−{0})−1A, by letting

v(a/s) = v(a)/v(s), if a 6= 0 and of course letting v(0/1) =∞. The value group of this valuation will be Γ.

5.34

If we follows the hint of the book and put C = g(B), then it’s obvious that C ⊇ g(A), since a = g(f(a)), for
all a ∈ A. For the other direction, let n be a maximal ideal of C; since f∗ is a closed mapping, the restriction
of n is the maximal ideal m of A (equivalently, m = A ∩ n). This implies that Am = A (since the elements
of the multiplicative set A− A ∩ n are the units). By the given relations, Cn dominates Am = A, but since
A is a valuation ring, it will be maximal with respect to domination, therefore, by exercise 27, Cm = A or
C ⊆ A. This completes the proof that A = C.

5.35

We will largely repeat the hint of the book; it constitutes a full proof. From exercises 1-3 it follows that, if
f : A −→ B is integral and C is an A-algebra, then (f ⊗A 1)∗ : Spec(B ⊗A C) −→ Spec(C) is a closed map.

Conversely, suppose that f has this property and that B is an integral domain; then f is integral.
Replacing A by its image in B, we can assume without loss of generality that A ⊆ B and f is merely
inclusion A −→ B. Let K be the field of fractions of B and let A′ be a valuation ring containing A (there is
at least one, since A is contained in its integral closure and this is precisely the intersection of all valuation
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rings that contain A; in particular, there is at least one such valuation ring). By corollary (5.22), it is enough
to show that B ⊆ A′. By the hypothesis, Spec(B ⊗A A′) −→ Spec(A′) is a closed map. Applying the result
of exercise 34 to the homomorphism B ⊗A A′ −→ K, defined by b ⊗A a′ 7→ ba′ yields that ba′ ∈ A′ for all
b ∈ B, a′ ∈ A′. In particular, for a′ = 1, we obtain B ⊆ A′.

This result remains valid if B is any ring with a finite number of minimal prime ideals (e.g if B is
Noetherian). Indeed, if {pi}1≤i≤n are the minimal prime ideals, then each composite homomorphism A −→
B −→ B/pi is integral, hence so is the induced map A −→

∏
(B/pi), hence so is A −→ A/R, and finally so

is A −→ B. This completes the proof.



Chapter 6

Chain Conditions

6.1

We have the following:
(i) Assume that u is not injective, namely that there is a non-zero x ∈ keru. Since u is surjective, there

is y ∈ M , such that u(y) = x and obviously y does not belong to keru; in particular y 6= x. Therefore the
inclusion keru ⊂ keru2 is strict and similarly the inclusion kerun ⊂ kerun+1 is strict for all n ∈ N. If we
let Kn be the kernel of un, then {Kn}n∈N is an ascending chain of submodules of M without a maximal
element, which is absurd by the Noether condition on M . Therefore u is injective and an isomorphism.

(ii) An identical argument for the cokernels of un shows that u is surjective (and thus an isomorphism)
in case M is Artinian.

6.2

If M was not Noetherian, then there would be a non-finitely generated submodule N of M . Let x1 ∈ N .
Since N is not finitely generated, N − (x1) 6= ∅, hence there is x2 ∈ N − (x1). For the same reason, there
is x3 ∈ N − (x1, x2) and in this fashion we construct a sequence {xn}n∈N of elements of M such that the
non-empty set of finitely generated submodules {(x1), (x1, x2), (x1, x2, x3), . . .} has no maximal element, a
contradiction. Therefore, M is Noetherian.

6.3

Under the conditions of the problem, we have the following exact sequence

0 −→M/N1
incl−→M/(N1 ∩N2)

π−→M/N2 −→ 0,

where incl and π are the natural inclusion and projection maps respectively. By Proposition 6.3, M/(N1∩N2)
is Noetherian (resp. Artinian) if and only if M/N1 and M/N2 are Noetherian (resp. Artinian).

6.4

As a Noetherian A-module, M will be finitely generated, say by x1, x2, . . . , xn. Let

f : A −→
n⊕
i=1

M = Mn

send a to (ax1, ax2, . . . , axn) ∈ Mn. Note that ker f = a (since f(a) = 0 if and only if ax1 = ax2 =
. . . = axn = 0 therefore if and only if aM = 0 which is equivalent to a ∈ a). But then A/ ker f can be
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embedded isomorphically in Mn, which is itself a Noetherian module (by corollary 6.4). As a submodule of
a Noetherian module, A/a will be Noetherian itself, as desired.

The statement collapses if we replace the Noetherian condition by the Artinian one. For example, let
A = Z and M = G be the subgroup of Q − Z consisting of all elements with absolute value equal to 1/pn,
n ≥ 0 (of course p is some fixed prime number, as in the book’s example). As shown in the book, G is an
Artinian Z-module, and its annihilator obviously equals 0. If the previous statement was still true in the
case of Artinian modules, then it would yield that Z = A/Ann(M) is Artinian, which is false.

6.5

If Y is a subspace of X with the induced topology, then any set U open in Y is of the form G∩ Y , where G
is a set open in X. Therefore, any ascending chain {Un}n∈N of sets open in Y is is of the form {Gn ∪Y }n∈N,
where {Gn}n∈N is an ascending chain of sets open in X. Since X is Noetherian, {Gn}n∈N is stationary, hence
so will {Un}n∈N be. Therefore, any subspace of X is Noetherian.

Assume that X is Noetherian, but not quasi-compact (the definition of the book seems to be that of
usual compactness). Then, there is an open cover C = {Ci}i∈I of X, such that no finite subcover of C covers
X. Let G1 be an arbitrary element of C. Since G1 doesn’t cover X, there is x ∈ X such that x /∈ G1, but
x ∈ Ci for some i ∈ I; let G2 = G1 ∪ C2. Since G2 fails to cover X, there is x′ ∈ Cj ⊂ X with x′ /∈ G2;
let G3 = G1 ∪ G2 ∪ Cj . In this fashion, we construct an ascending chain of open sets {Gn}n∈N that is not
stationary, contrary to the assumption that X is Noetherian. Therefore, X is quasi-compact.

6.6

We will follow an unorthodox order in the proof of the equivalences:
(i) ⇒ (iii) By the previous exercise, every subspace of X will be Noetherian and thus quasi-compact (by

the previous exercise again).
(iii) ⇒ (ii) O.K.
(ii) ⇒ (i) Let C = {Gn}n∈N be an ascending chain of open subsets of X. Then, since the subspace

Y =
⋃
n∈N

Gn

of X is quasi-compact and has C as an open cover, there will be a finite subcover {Gin}1≤n≤N of Y . But, if
i = max{i1, i2, . . . , iN}, then

Y =
⋃

1≤n≤N

Gin = Gi.

This Gi is clearly an upper bound of C = {Gn}n∈N, which shows that X is Noetherian.

6.7

We know that the maximal irreducible subspaces {Yi}i∈I are closed and cover X, by chapter 1, exercise 20,
(iii).

If we assume that the intersection of all the Yi is non-empty (let x be some point of X contained in
it), then any neighborhood of any point of X intersects any neighborhood of x, therefore we conclude that
X = {x}. In this case the statement is vacuously true.

In the case ∩i∈IYi = ∅ the set {X−Yi}i∈I is an open cover of X and this necessarily has a finite subcover
(since X is Noetherian and thus quasi-compact) and this in turn yields a presentation of X as a finite union
of irreducible and closed maximal subspaces.

We deduce that the set of irreducible components of a Noetherian space (which are V (pi), i ∈ I and the
pi are the minimal prime ideals of A) is finite.
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6.8

Assume that {V (an)}n∈N is a decreasing sequence of closed sets in Spec(A) (the an are assumed radicals of
ideals of A; this assumption leads to no loss of generality, since V (a) = V (r(a))). Since V is an inclusion-
reversing bijection from the set of all radicals of A to the set of all closed subsets of Spec(A), this chain
yields an increasing chain {an}n∈N which must stabilize by the Noether condition on A. This implies that
the initial chain stabilizes too and therefore Spec(A) is a Noetherian topological space.

The converse, however, is not true. Let A = k[x1, x2, . . .] be a polynomial ring over a ring A with
infinitely many variables adjoined and let a = (x1, x2, . . .) be the ideal generated by the squares of all the
variables. Then, Ã = A/a is not Noetherian (because A is not), but note that R(Ã) = (x1, x1, . . .) thus
Spec(Ã) = Spec(Ã/R) (by chapter 1, exercise 21, (iv)) and this is a point, hence it’s trivially Noetherian.

6.9

If A is a Noetherian ring, then Spec(A) is a Noetherian topological space (with the standard Zariski topology)
by exercise 8. Therefore, by exercise 7, Spec(A) will have a finite number of irreducible subspaces, which are
exactly the minimal prime ideals of A by chapter 1, exercise 20, (iv).

6.10

Supp(M) is closed since it equals V (Ann(M)) by chapter 3, exercise 19, (v). Now let {Supp(M)∩V (ai)}i∈I
be a decreasing sequence of closed subsets of Supp(M). By chapter 3, exercise 19, we see that Supp(M)∩ai =
V (Ann(M)∩V (ai) = V (Ann(M)∪V (ai) = V (bi) (where bi is the ideal generated by Ann(M)∩V (ai)). We
may assume that bi is a radical, since V (e) = V (r(e)) for all ideals e of A. Since V is an inclusion-reversing
bijection between the radicals of A and the closed subsets of Spec(A), we obtain an increasing sequence
{bi}i∈I of ideals of A. Letting pi be the minimal prime ideal that contains bi gives rise to an increasing
sequence Mpi

of submodules of M, which stabilizes because M is Noetherian. Therefore the initial sequence
must stabilize too and this completes the proof that Supp(M) is a Noetherian topological space.

6.11

By chapter 5, exercise 10, (i) f∗ : Spec(B) −→ Spec(A) always has the going-up property if it’s a closed
mapping.

If Spec(B) is a Noetherian space, then the converse is also true. Indeed, let V (p) ⊆ Spec(B); then, by
the equivalent condition (c) of chapter 5, exercise 10, we have that V (q) ⊆ f∗(V (p)), where q is merely the
restriction of p in A. Then, we would like to show that the map is also injective, so that the closed set V (p)
is mapped to a closed set. If the inclusion was strict, then we would have the infinite strictly descending
chain (the pi arise from the going-up property):

f∗−1(V (q)) ⊇ V (p) ⊇ V (p1) ⊇ V (p2) ⊇ . . .

of closed sets in Spec(B) (note that f∗ is always continuous, hence the preimage of any closed set is closed),
a contradiction by the fact that Spec(B) is Noetherian. Therefore f∗ is closed and this completes the proof.

6.12

Before the actual proof, note that given ideals p and q of A, V (p) = V (p) if and only if p = r(p) = r(q) = q.
Now, if {pn}n∈N is an ascending chain of prime ideals in A, then {V (pn)}n∈N is a descending chain

of closed sets in Spec(A) and since this space is assumed Noetherian, the sequence {V (pn)}n∈N must be
stationary, hence so will the sequence {pn}n∈N be.

The converse follows in the same fashion, since V (p) ⊇ V (q) ⇔ p ⊆ q for any two prime ideals p and q
of A.
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Chapter 7

Noetherian Rings

7.1

We note that Σ has maximal ideals and this follows by a typical Zorn’s Lemma argument. Given such a
maximal ideal a, assume that x, y /∈ a, but xy ∈ a. Then, b = a + (x) strictly contains a, therefore it must
be finitely generated; say b = a0 + (x), where a0 is also finitely generated. Note that a + (x) = a0 + (x)
implies a0 ⊆ a. We claim it also implies a = a0 +x(a : x). Indeed, the right hand side is obviously contained
in the left hand side and conversely, given any a ∈ a, a+ xt ∈ a0 + (x) for every t ∈ A. But then, there are
a0 ∈ a0, k ∈ A such that a = a0 + x(k − t), and, since x(k − t) ∈ a, k − t ∈ (a : x), therefore the left hand
side is contained in the right hand side too. This shows that the desired equality holds. Since (a : x) strictly
contains a it must be finitely generated, therefore a = a0 +x(a : x) is also finitely generated, a contradiction.
Thus a is prime.

As a corollary to the above, we observe that a ring in which every prime ideal is finitely generated is
Noetherian (I.S. Cohen).

7.2

Assume that f = a0 + a1x+ a2x
2 + · · · ∈ A[[x]] is nilpotent; we will show that all its coefficients an, n ≥ 0

are nilpotent. For that, we just need to show that given any prime ideal p and any coefficient an, an ∈ p.
Indeed, let A = A/p be the ring obtained by reduction of A modulo p; since A is an integral domain, so
will A[[x]] be (this is trivial to check). In particular, A[[x]] will contain no nonzero nilpotent elements. The
natural projection A � A lifts naturally to a projection A[[x]] � A[[x]] and since f is nilpotent, f will also
be nilpotent, which yields f = 0 by the above. Hence every coefficient an of f gets mapped to 0 = 0 + p in
A, which implies an ∈ p, as desired.

Conversely, if all the coefficients of f ∈ A[[x]] are nilpotent, and A is a Noetherian ring, then f is also
necessarily nilpotent. By the Noetherian condition on A, there is a positive integer k such that Rk = 0,
where R is the nilradical of A. We easily then see that fk = 0, hence f is nilpotent.

7.3

We have the following:
(i) ⇒ (ii) If a ∩ S = ∅, then the restriction of S−1a = a, hence we may just put x = 1. Otherwise,

(S−1a)c = A, thus x = 0 satisfies the given condition.
(ii) ⇒ (iii) Assume otherwise; in particular, if S = {xn}n≥0, then S ∩ a = ∅. Therefore, (a : y) =

(S−1a)c = a for some y = xm. But then, xkm = yk = 1 for some k ∈ N, and the sequence terminates, which
is absurd.

(iii) ⇒ (i) We may assume that a = 0, passing on to A/a if necessary, and then we may repeat the proof
of lemma 7.12 since all the chains appearing in that proof are annihilators, and Ann(z) = (0 : z), for all
z ∈ A.
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7.4

We have the following:
(i) This ring is isomorphic to the ring of rational functions C(t), hence it’s not Noetherian.
(ii) This set is not even a ring (it doesn’t contain the 0 power series).
(iii) This ring is isomorphic to the ring of all rational functions C(t), hence it’s not Noetherian.
(iv) This ring is isomorphic to C[z], hence it’s Noetherian.
(v) This ring is isomorphic to C[z, w], hence it’s Noetherian.

7.5

Since B is integral over BG (any x ∈ B is a root of
∏
σ∈Σ(x− σ(x)) ∈ BG[x]), proposition 7.4 implies that

BG is a finitely generated A-generated algebra.

7.6

If the characteristic of K is 0, then Z ⊂ Q ⊆ K, and since K is finitely generated over Z, it will be so over Q,
therefore proposition 7.8 yields that Q is finitely generated over Z, an absurdity. Therefore, the characteristic
of K equals some prime p and K is a finitely generated algebra over Z/pZ, which, by the Nullstellensatz,
implies that K is a field. In particular, it’s a finite field, as desired.

7.7

An immediate corollary of the Nullstellensatz is that if h is a polynomial that vanishes everywhere an
irreducible polynomial p does, then p|h. This fact implies that the variety X is well defined as the zero
locus of the irreducible polynomials {fαi

}α∈I0 and by the same argument there cannot be more then d such
polynomials, where d is the minimal of their degrees. In particular, the variety is defined by a finite number
of polynomials.

7.8

Indeed, if A[x] is Noetherian, then so is A. Let a1 ⊆ a2 ⊆ · · · ⊆ an ⊆ . . . be any ascending chain of ideals
in A. This induces an ascending chain a1[x] ⊆ a2[x] ⊆ · · · ⊆ an[x] ⊆ . . . in A[x] (the ai[x] have the obvious
meaning here). This chain stabilizes, by the Noetherian condition on A[x]; say mathfrakan = an+1 = . . . .
Then, if there were y ∈ an+1 such that y /∈ an, we would have y ∈ an+1 (the constant polynomial equal to
that value), but y /∈ an, a contradiction. This completes the proof.

7.9

Let a be a n ideal of A and let m1,m2, . . . ,mr be the maximal ideals that contain a. Let x0 be a non-zero
element of a and let m1,m2, . . .mr+s be the maximal ideals that contain x0. Since mr+1, r + 2, . . . ,mr+s do
not contain a, there exist xj ∈ a, 1 ≤ j ≤ s, such that xj /∈ mj . Since each Amj is Noetherian, the extension
Amj a of a in Amj is finitely generated; let xi, x2, . . . , xt be the elements of a whose images generate Amia,
1 ≤ i ≤ r. Let a0 = (x0, . . . , xt); we observe that a0 and a have the same extension in Am for al maximal
ideals m (since they do in the finite number of ideals m1, . . . ,mr+s and their common extension is the whole
of the ring Am in every other ideal m), therefore, by proposition 3.8 we deduce a = a0; in particular, a is
finitely generated and since we chose an arbitrary ideal, A is necessarily Noetherian.
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7.10

In chapter 2, exercise 6, we deduced that M [x] ' M ⊗A A[x]. Since M and A[x] are Noetherian A-
modules (by assumption and Hilbert’s Basis Theorem respectively), M ⊕ A[x] will be a Noetherian A-
module. We also observe that there is a surjective map M ⊕ A[x] � M ⊗A A[x] (the natural projection
(m,a(x)) 7→ (m⊗A a(x))), hence M ⊗A A[x] will also be Noetherian by Proposition 7.1. This completes the
proof.

7.11

It’s not necessary that A is Noetherian. Consider, for example, A =
∏∞
i=1 Z/2Z, a direct product of infinitely

many copies of the field F = Z/2Z = {0, 1}. The strictly ascending chain of ideals

0 ⊂ F× 0 ⊂ F× F× 0 . . .

shows that A is not Noetherian. It’s also evident that every element of A is idempotent (A is Boolean).
Given any prime ideal p of A, Ap is a local integral domain with maximal ideal pp. We claim that pp = 0;

indeed, given any non-zero element x ∈ Ap, we have x(1 − x) = 0, therefore 1 − x = 0, a conclusion that
contradicts the primality of p. Therefore, pp = 0 and Ap is a field (which is Noetherian) for every prime
ideal p of A.

7.12

By exercise 1 (the Cohen criterion), we may examine just examine ascending chains of prime ideals in A.
Let

p1 ⊆ p2 ⊆ · · · ⊆ pn ⊆ . . .

be one. Since the induced map f∗ : Spec(B) −→ Spec(A) is surjective (by faithful flatness), the above chain
gives rise to a chain

q1 ⊆ q2 ⊆ · · · ⊆ qn ⊆ . . . ,

where pi = f∗(qi). Since the latter chain terminates (B is assumed Noetherian), the former must too. Thus
A is Noetherian, as desired.

7.13

The fibre of f∗ at p ∈ Spec(B) is of course Spec(k(p)⊗A B) = Spec(Bp/pBp). Since f is of finite type and
A is Noetherian, B will also be Noetherian, hence so will Bp/pBp be. This means that Spec(Bp/pBp) will
be a Noetherian subspace of B, as desired.

Nullstellensatz, strong form

7.14

We will essentially repeat the hint of the book; it constitutes a full proof. It is of course clear that r(a) ⊆ I(V ).
Conversely, if f /∈ r(a), then there is a prime ideal p that contains r(a) but not f . Let f be the image of
f under the natural projection map A −→ A/p and let C = Bf = B[1/f ]. If m is a maximal ideal of C,
then C/m ' k (by the corollary to proposition 7.9; note that C is a finitely generated k-algebra, therefore
the conditions of the lemma are satisfied). The images xi, 1 ≤ i ≤ n in C of the generators ti, 1 ≤ i ≤ n
define a point x = (x1, x2, . . . , xn) ∈ kn which belong to the variety V , but f(x) 6= 0. Therefore, we also
have I(V ) ⊆ r(a). This completes the proof that r(a) = I(V ), as desired.
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7.15

Under the conditions of the problem, we have the following:
(i) ⇒ (ii) Since A is flat over itself, so is An = ⊕ni=1A.
(ii) ⇒ (iii) Let i : m −→ A be inclusion, which is, in particular, injective. If M is flat, then the map

i⊗A id : m⊗AM −→ A⊗AM will also be injective.
(iii) ⇒ (iv) If M is flat, then the exact sequence 0 −→ m −→ A −→ k −→ 0 gives rise to the exact

sequence 0 −→ m⊗AM −→ A⊗M −→ k ⊗AM −→ 0, hence by definition, TorA1 (k,M) = 0.
(iv) ⇒ (i) For this last part, we merely reproduce the book’s hint; it constitutes a full proof. Let

x1, x2, . . . , xn be the elements of M whose images in M/mM are a basis for this vector space (we consider,
of course, M/mM as a module over the field A/m). By (2.8), the xi generate M over A. Let F be the free
module An with canonical basis e1, e2, . . . , en and define φ : F −→ M by φ(ei) = xi; let E be the kernel of
this map. Then, the exact sequence

0 −→ E −→ F −→M −→ 0

yields, by the given condition, the exact sequence

0 −→ k ⊗A E −→ k ⊗A F
1⊗Aφ−→ k ⊗AM −→ 0,

where k⊗AF, k⊗AM are vector spaces of the same dimension over k. It follows that 1⊗Aφ is an isomorphism,
hence its kernel k ⊗A E must vanish. Since E is finitely generated, as a submodule of the Noetherian space
F , and A is a local space, we deduce by chapter 2, exercise 3, that E = 0. This implies that M is isomorphic
to a free module, hence it’s free, as desired.

7.16

Under the conditions of the problem, we have the following:
(i) ⇒ (ii) If M is a flat A-module, then, since flatness is a local property, Mp is a flat Ap-module for all

prime ideals p of A. But since Ap is a local ring, exercise 15 implies that Mp is a free A-module.
(ii) ⇒ (iii) O.K.
(iii) ⇒ (i) Since Ap is a local ring, the given condition is equivalent to flatness of Mp for all maximal

ideals m of A, which is equivalent to Mm being flat for all maximal ideals m by exercise 15, hence to M being
flat since flatness is a local property.

We conclude with the following charming epigram: ”flat = locally free”.

7.17

The proof that every submodule of a Noetherian module has primary decomposition follows in exactly the
same fashion that propositions (7.11) and (7.12) follow; the proofs are in the book.

7.18

We have the following:
(i) ⇔ (ii) This equivalence follows from proposition 7.17.
(ii) ⇔ (iii) Consider the mapping φx : M � xM given by m 7→ xm, which yields that M/p =

M/Ann(x) ' xM , a submodule of M .
Conversely, if A/p is isomorphic to a submodule N of M , then there is an injection φ : A/p −→M . The

element x = φ(1) of M satisfies Ann(x) = p.
For the least part, we use induction on the number n of generators of M . If n = 0, then M = 0 and the

result holds vacuously, so assume that n > 0 and the result holds for modules with less than n generators.
Let p be a prime belonging to 0. There’s a submodule N of M such that A/p 'M/N (since A is Noetherian,
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therefore so is a/p), hence 0 ⊂ N ⊂ M and N has fewer generators than M ; now the inductive hypothesis
completes the proof that there is a chain of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M,

in which each quotient Mi/Mi−1 is of the form A/pi, where pi is a prime ideal of A.

7.19

Any such decomposition of a is a minimal decomposition of primary ideals (since A is Noetherian), hence
the uniqueness of the set of associated ideals of a.

7.20

We have the following:
(i) Since F contains all open subsets of X and is closed under complements, it also contains all closed

subsets of X. Therefore, we may equivalently describe F as the minimal subspace of X that contains all
open and closed subsets of X and is closed under finite intersections and unions. Therefore, any element of
F will necessarily occur as the intersection of the union of a finite number of open sets with the union of a
finite number of closed sets; hence any E ∈ F can be written as E = U ∩C, where U,C are open and closed
in X respectively. Conversely, it’s obvious that any set of the above form will belong to F .

(ii) If E contains an open subset O of X, then given any x ∈ X and any open neighborhood N around
x, we will have E ∩ N 6= ∅, by the irreducibility of X. Therefore, there is an element of E in any open
neighborhood of X, or, equivalently, E is dense in X.

Conversely, if E ∈ F is dense in X, and E = U ∩C (we keep the previous notation, of course), then given
any open subset V of X, U ∩ V 6= ∅ and V ∩ U is open in X. Therefore may restrict our attention to open
subsets V contained in U . Assume that there is no open set inside E. We can assume V * C; otherwise we
obtain a contradiction. But, if x ∈ (X − C) ∩ V , we have x ∈ N such that N ⊆ X − C (since C is closed)
and N ′ = U ∩N which will have empty intersection with E, a contradiction since N ′ is a neighborhood of
x and E is dense. Therefore, E contains at least one open set of X.

7.21

Let E ∈ F . Then, E ∩ X0 is a constructible set in the irreducible space X0 and therefore exercise 2(ii)
implies that E ∩X0 6= X0 or otherwise E ∩X0 contains a non-empty open subset of X0.

For the converse, we use the hint. Assume that E /∈ F ; this implies that the collection G of closed subsets
X ′ ⊂ X such that E ∩X ′ /∈ F is non-empty (it contains X) and thus has a minimal element X0, since X is
Noetherian. Let X = Y1 ∪ · · · ∪ Yl, where each Yi is irreducible. Then,

E ∩X0 = (E ∩ Y1) ∪ · · · ∪ (E ∩ Yk),

and by the minimality of X0 each E∩Yi belongs to F and thus E∩X0 ∈ F , lest k = 1 and X0 is irreducible.
Therefore, by the hypothesis, we have the following two conditions:

(i) Assume that E ∩X0 6= X0; then
E ∩ (E ∩X0) ∈ F ,

by the minimality of X0. But E ∩ (E ∩X0) = E ∩X0, which yields E ∩X0 ∈ F , an absurdity.
(ii) On the other hand, assume that E ∩ X0 contains a non-empty open subset of X0; denote that by

U0 = U ∩ X0, where U is some subset open in X. Then, U0 ∈ F and the complement of U0 in E ∩ X0

is in the complement U c ∩ X0, which is in F . More precisely, E ∩ X0 = (U ∩ X0) ∪ ((E − U) ∩ X0) =
(U ∩X0) ∪ (E ∩ (U c ∩X0)) ∈ F , a contradiction.

We deduce that E ∈ F , as desired.
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7.22

Let E be open and X0 be closed and irreducible. Then E ∩X0 is open on X0.
Conversely, assume that for all closed, irreducible subsets of X0 we have E ∩X0 or E ∩X0 contains an

open subset of X0. We proceed as in exercise 21, by assuming that E is not open in X0 and arriving at
a contradiction. Let G be the collection of all closed subsets X ′ of X for which E ∩X ′ is not open in X ′.
Then, X ∈ G, thus G must have a minimal element X0; this is, as before, irreducible. Again, we treat two
cases.

(i) The first is E ∩X0 = ∅, but since ∅ is open in X0, this implies X0 /∈ G, an immediate contradiction.
(ii) Thus E ∩X0 must contain at least one open subset of X0, say U ∩X0, where U is open in X. Now

U c ∩X0 is a closed subset of X0, thus E ∩ (U c ∩X0) is open in U c ∩X0; write this as V ∩ (U c ∩X0) for V
open in X. Finally, E ∩X0 = (U ∩X0) ∪ (E ∩ (U c ∩X0)) = (U ∩X0) ∪ (V ∩ (U c ∩X0)) = (U ∪ V ) ∪X0,
and this implies X0 /∈ G, an absurdity. Therefore, G is necessarily empty, or E is open in X, as desired.

7.23

We will roughly repeat the hint of the book; it constitutes a full solution. Let E be a constructible set in Y ;
we may assume that E = U ∩ C, where U,C are open and closed respectively. Let C = V (b) = Spec(B/b),
so by replacing B with B/b and f with the composite mapping A −→ B −→ B/b, we may assume that E
is open in Y . But Y is Noetherian, hence quasi-compact (in the sense of the book), so Y is covered by a
finite number of sets of the form Yg = Spec(Bg). By replacing B with one of the rings Bg, we may assume
E = Y . That is it is enough to show that f∗(Y ) is constructible in X.

We shall employ the criterion of exercise 21. Let X0 = V (p) = Spec(A/p) be an irreducible closed set in X
such that f∗(Y )∩X0 is dense in X0; we must show that f∗(X0)∩X0 contains a non-empty open subset of X0.
Now f∗(Y ) ∩X0 = f∗(f∗−1(X0), and f∗−1(X0) = f∗−1(V (p)) = V (pe) = Spec(B/pe) = Spec((A/p)⊗A B).

But this restricted map is induced by the map f : A/p −→ (A/p)⊗A B. By assumption, f
∗

has a dense
image and thus by chapter 1, exercise 21, f is injective. So we may assume that A is an integral domain and
f is injective.

Let Y1, Y2, . . . , Yn be the irreducible components of Y ; it suffices to show that f∗Yi contains an open set
of X, for some i. Indeed, since X is now assumed to be irreducible, we may select Yi such that f∗(Yi) is
dense in X. Write Yi = V (qi), and replace B with B/qi. By the density of f∗(Yi), the map A −→ B/qi
is still injective, and so we are reduced to the case in which A and B are both integral domains and f is
injective of finite type. We wish to show that f∗(Y ) contains an open subset of X.

By exercise 21, there is s 6= 0 in A such that every map of A into an algebraically closed field Ω which
does not kill s extends to B. We claim that f∗(Y ) contains the nonempty open set Xs. Indeed, let p be a
prime ideal not containing s, and let φ be the composite map

A −→ A/p −→ k(p) −→ Ω,

where k(p) is of course the fraction field of A/p, and Ω is any algebraic closure of it. Obviously φ does not
vanish at s precisely because s /∈ p, so φ extends to a map φ : B −→ Ω and q = ker(φ) is a prime ideal of φ,
and q ∩A = p simply because φ restricts to φ. So p ∈ f∗(Y ), whence Xs ⊆ f∗(Y ).

7.24

We merely reproduce the hint of the book; it constitutes a full proof. If f∗ is an open mapping, then f has
the going-down property (by chapter 5, exercise 10). Conversely, if f has the going-down property, then
we may without loss of generality assume that f∗(Y ) is open in X. In this case, the going-down property
asserts that if p ∈ E and p′ ⊆ p, then p′ ∈ E; in other words, if X0 is an irreducible closed subset of X and
X0 intersects with E, then E ∩X0 is dense in X0. By exercises 20 and 22, E is open in X.
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7.25

Under the assumptions of the problem, the conclusion is straightforward; chapter 5, exercise 11 implies that
f has the going-down property and exercise 24 implies that f∗ is an open mapping.

7.26

Let’s fix some notation first; let F (A) = {M} be the set of isomorphism classes of finitely generated modules
over A, and C = ZM be the free group generated by F (A), as in the problem. Now, let e(M ′,M,M ′′) be
the isomorphism class of M ′ +M ′′ −M in C, where 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence;
let D be the group generated by those e(M ′,M,M ′′). Then, K(A) = C/D and γA(M) is the image of M in
K(A). With the above notation, we have the following:

(i) Any additive function λ : F (A) −→ G obviously factors as λ = λ0 ◦ γ, where λ0 maps the class (M)
to γ(M). The map λ0 is well defined because λ is additive.

(ii) In exercise 18 it is deduced that if

0 ⊂M0 ⊂M − 1 ⊂ · · · ⊂Mn = M,

where Mi/Mi−1 = A/pi, then

(M) =
n−1∑
i=1

γ(A/pi).

Passing to K(A) yields
(M) =

∑
k

γ(A/pi),

as desired.
(iii) If A is a principal ideal domain, then we may put pk = (xk), xk ∈ A, therefore, the previous

construction yields γ(A/pk) for all pk except for at most one, say pkM
. The map K(A) −→ Z that is defined

by (M) 7→ k yields the desired isomorphism.
(iv) The map f : A −→ B send (M) to f(M); now the module M/A may first be regarded as a finite

generated module over B and thus f(M) is its image in K(B). The induced map f! : K(A) −→ K(B)
satisfies by construction f!(γB(M)) = γA(N) and it’s obvious that ! is a covariant functor in the sense that
(f ◦ g)! = f! ◦ g!.

7.27

With the notation of the previous problem, we have the following:
(i) The closure of the commutative ring Kl(A) follows from the flatness of its elements and all other

axioms are easily verified; in particular, the identity of addition is γl(0) and the identity of multiplication is
γl(A).

(ii) Again, closure is satisfied by the flatness of the elements of Kl(A) and the action of Kl(A) on K(A)
is given by γl(M)γ(N) = γ(M ⊗N).

(iii) In this case, Kl(A) = K(A/m) ' Z, where m is of course the maximal ideal of A.
(iv) We just repeat the hint for this question, but it’s at any rate obvious. If M is flat and finitely

generated over A, then B⊗AM is flat and finitely generated over B; this condition guarantees that the map
is well-defined. Now the definition itself suffices to make the implication (f ◦ g)! = f ! ◦ g! obvious.

(v) It’s obvious by the definition of f ! that f !(f!(x)y) = xf!(y) for every x ∈ Kl(A), y ∈ K(B).
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Chapter 8

Artin Rings

8.1

The existence of a positive integer ri such that p
(ri)
i ⊆ qi follows immediately from the definition of p(n) =

Sp(pn) ⊆ pn, and the fact that in an Artin ring there is always some power of the radical of any ideal qi
(here, this radical is pi) that is contained to qi. This completes this exercise.

8.2

We assume that a topological space is called discrete if and only if all its subspaces are closed:
(i) ⇒ (ii) If A is Artinian, then all of its prime ideals are maximal, therefore there is a finite number of

prime ideals, since the number of maximal ideals is necessarily finite (by proposition 8.3). This implies that
Spec(A) is finite. Since every p ∈ Spec(A) is maximal, we obtain that the point {p} ∈ Spec(A) is closed; the
above imply that Spec(A) is discrete, as desired.

(ii) ⇒ (iii) O.K.
(iii)⇒ (i) If Spec(A) is discrete, then {p}, where p is any prime ideal, is closed, therefore p is maximal in

A. This implies that the Krull dimension of A is 0, and any Noetherian ring of Krull dimension 0 is Artinian,
by Theorem 8.5. This completes the proof.

8.3

We have the following:
(i) If A is Artinian, then it can be written as a finite product of local Artin rings, hence we may consider

it to be local without loss of generality. The residue field F = A/m of A will be a finite algebraic extension
of k, by the Nullstellensatz (Corollary 5.24). Since A is Artinian, it will be of finite length as an A-module,
and we conclude that it will be a finite k-algebra, as desired.

(ii) The converse is obvious: the ideals of A are k-modules, thus k-vector spaces, and so they satisfy the
descending chain condition and A is Artinian.

8.4

We have the following:
(i) ⇒ (ii) If the fibres of f∗ are finite, then they are also discrete subspaces of Spec(B), by exercise 2.
(i) ⇔ (iii) The fibres Spec(k(p) ⊗A B) of f∗ are discrete subspaces of Spec(B) if and only if they are

finite (by exercise 3) k(p)-algebras (k(p) being the residue field of Ap).
(iii) ⇒ (iv) Here, the fibres of f∗ will be finite, again by exercise 3.
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8.5

Indeed, the number of such points cannot be greater than the dimension of A. In particular, it is finite.

8.6

Since by assumption r(q) = p, any chain of primary ideals q = q0 ⊆ q1 ⊆ · · · ⊆ qm = p will consist of
p-primary ideals qi. We note that any such chain will be of finite length (by the Noetherian condition on
A) and all such lengths will be bounded (the height of p is finite), since merging two chains by taking the
intersection of their respective elements and then attaching the extra terms up to p yields a new chain of
p-primary ideals with length equal to the length of the greatest chain. Therefore, if for every chain we could
find another chain of greater length, we would be able to construct a chain of infinite length, a contradiction.

By the above argument, we deduce that any maximal chain (i.e. any chain that cannot be further refined
by merging) will have the same length as any other maximal chain; otherwise, merging two maximal chains
of different length would yield a chain strictly finer (thus longer) than both of them, a contradiction. In fact,
the length of the maximal chains will be equal to the number r in the statement of the Noether Normalization
Lemma, chapter 5, exercise 16.



Chapter 9

Discrete Valuation Rings and
Dedekind Domains

9.1

We see that S−1A is a Noetherian domain if A is one and the Krull dimension of S−1A is less than or equal
to the dimension 1 of A. Thus if dim(S−1A) = 0, then S−1A is the field of fractions of A; otherwise, it’s a
Dedekind domain.

The exact sequences
1 −→ UA −→ K∗ −→ I −→ H −→ 0

and
1 −→ US−1A −→ K∗ −→ IS−1A −→ HS−1A −→ 0

for A and S−1A respectively induce explicitly the surjective map H −→ H ′ given by (u) 7→ (u/1); in fact,
this is merely extension of ideals.

9.2

Since equality is a local property, we may assume that A is a discrete valuation ring without loss of generality.
If dimA = 0, then A is a field and the proof is elementary. Otherwise, assume that dimA = 1. It is always
true that c(fg) ⊇ c(f)c(g), without any conditions on A. For the converse, assume that the maximal ideal
m of A is generated by x and let f(x) = a0 + a1x + · · · + anx

n and g(x) = b0 + b1x + · · · + bmx
m with

coefficients ai, bj ∈ A. Now, if c(f) = xsA and c(g) = xtA, then v(x) = 1,min{v(a0), v(a1), . . . , v(an)} =
s,min{v(b0), v(b1), . . . , v(bm)} = t. Then, there exist non-negative n0,m0 less than n,m respectively, such
that v(an0) = s, v(bm0) = t and v(ai) > s, v(bj) > t for all i < n0, j < m0. Also, the coefficient of xn0+m0 in
the polynomial fg is

cn0+m0 =
∑

i+j=n0+m0

aibj ,

where we agree that ai = bj = 0 if i > n or j > m. Now it’s easy to see that v(an0bm0) = s+t and all the other
terms have valuations strictly larger than s+ t, by the construction of n0,m0. Therefore, v(cn0+m0) = s+ t,
which implies that c(fg) ⊇ cn0+m0A = xs+tA = c(f)c(g). This shows the inverse inclusion and completes
the proof.

9.3

We claim that a Noetherian valuation ring is a principal ideal domain (PID), hence has dimension at most 1
(non-zero prime ideals in PID’s are always maximal). A Noetherian valuation ring which is not a field would
then satisfy the hypotheses of Proposition 9.2 and the equivalent condition (iii) of that proposition, hence it’s
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a discrete valuation ring (DVR). For the proof, just observe that in an arbitrary valuation ring, all finitely
generated ideals are principal; given a finite list of generators for an ideal, the entire ideal is generated by
the generator with the least valuation. In a Noetherian ring, this is case for all ideals, yielding the desired
conclusion.

Conversely, it follows immediately from the definitions that any discrete valuation ring is Noetherian and
a valuation ring.

9.4

We will construct a valuation on A. Let m be a generator of m. Given a nonzero element x ∈ A, we may
write x uniquely in the form umt where u is a unit in A and t is a nonnegative integer. It is clear that if
such a representation exists, it is in fact unique. There is actually one, and this is shown as follows: let t ≥ 0
be such that x ∈ mt −mt+1. Then, x = umt for some u and the fact that x /∈ mt+1 shows that u is a unit.
The map A −→ Z given by x 7→ t is the desired discrete valuation on A.

9.5

Since M is finitely generated, M is in fact a quotient An/K for some n ∈ N. Now, since A is Noetherian, M
is torsion-free if and only if Mp is torsion-free, hence if and only if Mp is free (because, given p ∈ Spec(A),
there exists np ∈ N such that Mp ' Anp/Kp by Mp being finitely generated and this module is torsion-free
if and only if Kp = 0) for all prime ideals p of A. But local freedom is equivalent to flatness over Noetherian
rings, which yields the desired equivalence.

9.6

Let p be a prime ideal of A; then Mp is a finitely generated torsion module over the principal ideal domain
Ap. In fact, we claim that Mp = 0 except for a finite number of primes. For Ann(M) 6= 0, since M is a
torsion submodule and so

Ann(M) = pn1
1 . . . pnm

m ,

where mi > 0. But then
Supp(M) = V (Ann(M)) = {p1, . . . , pm}.

Now, if Mp 6= 0, then the structure theorem for principal ideal domains yields that

Mp =
t⊕
i=1

Ap/pA
mi
p =

t⊕
i=1

(A/pmi)p.

Let D be this module on the right. In fact, Dp = D, which follows from the following lemma:
Let A be a Dedekind domain, p, q nonzero prime ideals of A, and m > 0. Then,

(A/pm)p ' A/pm

and
(A/pm)q = 0.

For the proof, note that there is an obvious map from the right-hand side to the left-hand side: x 7→ x/1.
It is injective, or equivalently sa ∈ pm with s /∈ p implies a ∈ pm, since by unique factorization of ideals
pm divides the ideal (sa) and p does not divide (s), hence pm divides (a), as desired. For surjectivity, let
x ∈ A − p; we wish to show that x is invertible modulo pm. But p is maximal, so x is already invertible
modulo p, namely there exists y ∈ A − p such that 1 + xy ∈ p. Taking this relation to the m’th power
yields (1 + xy)m ∈ pm, and expanding the left-hand side yields the inverse of x modulo pm. For the second
statement, note that since p and q, q * p, there exists s ∈ p − q, for which sm kills A/pm. This completes
the proof of the lemma.
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For each pi ∈ Supp(M), let Di be the corresponding module D, given in the decomposition of Mpvia the
structure theorem. The lemma yields that (Di)pj

is equal to δijDi, where δij is the Kronecker delta. Now let

D =
t⊕
i=1

Di;

observe that the composition

M −→
⊕
p6=0

Mp
'−→

m⊕
i=1

Di

is an isomorphism when localized at each non-zero prime ideal of A. Hence the original map is an isomor-
phism, as desired.

9.7

Suppose a = p is a prime ideal in A, and let n > 0. Then, by the lemma we showed in exercise 9.6, A/pn

is isomorphic to (A/pn)p = Ap/p
nAp, namely a quotient of the principal ideal domain, which is a principal

ideal ring itself. Hence the statement holds in this case. For a general a, write a = pn1
1 . . . pnr

r (where ni > 0)
and note that

A/a =
⊕
p6=0

(A/a)p =
r⊕
i=1

(A/pni
i )

by the previous exercise. Hence A/a is a product of principal ideal rings, and thus an ideal ring itself.

9.8

As equality is a local property and sums and intersections of ideals commute with localization, we may
assume that A is a discrete valuation ring without loss of generality. Then the maximal ideal m of A is
principal, say m = (x) and every other ideal is merely (xk) for some k ≥ 0. In particular, say a = (xa), b =
(xb), c = (xc), with a, b, c ∈ N. Then, it’s easy to check (and a standard fact from Algebraic Number
Theory) that a ∩ b = (xmax(a,b) and b + c = (xmin(b,c)). The desired equalities of ideals then merely become
max(a,min(b, c)) = min(max(a, b),max(b, c)) and min(a,max(b, c)) = max(min(a, b),min(b, c)). But these
are trivially true, as desired.

9.9

The forward implication is clear, for if x is congruent to xi modulo ai and to xj modulo aj , then x is
congruent to both modulo ai + aj , hence xi and xj must be congruent modulo ai + aj .

For the other direction, consider the composition of maps

A
φ−→

n⊕
i=1

A/ai
ψ−→

⊕
i<j

A/(ai + aj),

where φ(x) = (x + a1, . . . , x + an) and ψ(x) = (x1 + a1, . . . , xn + an) has (i, j)’th component equal to
xi−xj +ai+aj . The given proposition is equivalent to the previous diagram being an exact sequence. Note
that since exactness is a local notion, we may assume that A is a discrete valuation ring, by localizing at
every nonzero prime ideal of A.

Under this assumption, A has a unique maximal ideal m, and each ai is a power mni of m for some mi > 0.
We may reorder the ideals so that mi ≤ mi+1, or ai ⊇ ai+1 for all i’s. Now let (x1 +a1, . . . , xn+an) ∈ kerψ;
this immediately implies that xi ≡ xj(mod ai) whenever i < j. In particular, xn ≡ x1(mod a1), as well as
xn ≡ x2(mod a2), ... and xn ≡ xn−1(mod an−1), so we have solved the system with x = xn.
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Note that the kernel of φ is
⋂
i ai. In a Dedekind domain, this yields the following result: If a ⊂ A is a

nonzero ideal, and
a = pm1

1 . . . pmn
n ,

then
A/a = A/(pm1

1 . . . pmn
n ) = A/pm1

1 × · · · ×A/pmn
n ,

independently of the last problem.



Chapter 10

Completions

10.1

By the definition of A and B, we have that:

A =
⊕
n≥0

Z/pZ

and
B =

⊕
n≥0

Z/pnZ.

This implies pA = 0, whence
Â = lim←−−

k≥0

A/pkA = lim←−−
k≥0

A/(0) = A;

this verifies the first assertion of the problem, namely that the completion of A with respect to the p-adic
topology is in fact A.

Now, for the second claim, consider the fundamental neighborhoods of B with the p-adic topology; these
are precisely pkB for k ≥ 0. The topology induced on A by this topology on B would then have fundamental
neighborhoods given by Ak = α−1(pkB) which is explicitly given by

Ak = α−1(0⊕ 0 · · · ⊕ 0
⊕
n>k

Z/pnZ) =
⊕
n>k

Z/pZ.

Therefore, the completion of A with respect to this topology is

Â = lim←−−
k≥0

(A/Ak) = lim←−−
k≥0

(Z/pZ)k =
∏
n≥0

Z/pZ,

since for any countable family of modules {Mn}n≥0 it is a standard exercise that the inverse limit of the
system {M0⊕M1⊕· · ·⊕Mn}n≥0, with the obvious mappings between the sums, is merely

∏
Mn. The above

implies, in particular, that the completions of A with respect to the two different topologies fail to coincide.
For the final remark, consider the following sequence:

0 −→ A
α−→ B

p·−→ B −→ 0;

this is exact, but the completed sequence

Â
α̂−→ B̂

p̂·−→ B̂ −→ 0

is not, since the kernel of the p̂· map is
∏
k≥0 Z/pZ, which is the completion of A with respect to the topology

induced by B, but this does not coincide with the p-adic completion of A. Thus, p-adic completion does not
commute with taking kernels, and therefore it is not a right-exact functor on the category of all Z-modules,
as desired.
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10.2

The given exact sequence is explicitly the following:

0 −→
⊕
k>n

Z/pZ −→
⊕
k≥0

Z/pZ −→
⊕

n≥k≥0

Z/Z −→ 0.

By the previous exercise, we have
lim←−−
k≥0

A/An =
∏
n≥0

Z/pZ

and
lim←−−
n≥0

An = 0.

Therefore, the completed sequence cannot be exact.
However, we claim that lim

←−
1A = 0; this follows from the following abstract nonsense argument: let C

be the category of inverse systems of R-modules, and D the subcategory of constant inverse systems of R-
modules, which we regard via the obvious isomorphism to the category of R-modules. The inclusion functor
D −→ C has a left-adjoint, the left-exact functor that takes an inverse system {Cn}n∈N in C to its first term
C1. It follows that the inclusion functor D −→ C preserves injectives, that is, a constant inverse system whose
underlying module is injective is in fact an injective object in the category of inverse systems. Now, let I be
an injective module with A ↪→ I, and consider the short exact sequence 0 −→ A −→ I −→ I/A −→ 0 as a
short exact sequence of constant inverse systems. Looking at the long exact sequence arising from derived
functors lim

←−
1·, we find lim

←−
1A = 0, since the map i −→ I/A is surjective and lim

←−
1I = 0. This completes the

proof of the claim.
The above implies that the long exact sequence of derived functors begins:

0 −→ 0 −→
⊕
n≥0

Z/pZ −→
∏
n≥0

Z/pZ −→ lim
←−

1An −→ 0,

hence lim
←−

1An = (
∏

Z/pZ)/(
⊕

Z/pZ).

10.3

By Krull’s Theorem, the submodule

E =
∞⋂
n=1

anM

is annihilated by some element of the form 1 + a, with a ∈ a. Hence Em = 0 for all maximal ideals m that
contain m since 1 + a is a unit in Am if a ⊆ m. Therefore,

∞⋂
n=1

anM = E ⊆
⋂

m⊇a

ker(M −→Mm).

Conversely, let
K =

⋂
m⊇a

ker(M −→Mm).

Then, Km = 0 for all maximal ideals containing a, which implies that K = aK. Hence

K = aK = a2K = · · · = an = · · · =
⋂
n∈N

anM.

Therefore, the desired relation holds.
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To prove the other claim, first note that M̂ = 0 if and only if M̂ = aM̂ which is true if and only if
M = aM , which is equivalent to

M =
⋂
n∈N

anM =
⋂
n∈N

ker(M −→Mm),

namely
Mm = 0

for all maximal ideals m containing a. This is equivalent to asserting that Supp(M) ∩ V (a) contains no
maximal ideals, therefore to the desired statement that Supp(M) ∩ V (a) = ∅.

10.4

Since x is not a zero divisor in A, the sequence

0 −→ A
x·−→ A −→ A/xA −→ 0

is exact. Since completion is an exact functor, the completed sequence

0 −→ Â
x̂·−→ Â −→ Â/x̂Â −→ 0

is also exact and this implies that x̂ is not a zero divisor, as desired.
However, this does not yield the second assertion, namely that ”A is an integral domain ⇒ Â is an

integral domain”. A counterexample to the above statement, due to Nagata and appearing in Eisenbud’s
Commutative Algebra, pages 187-188, is the following: let R = k[x, y] and m = (x, y); the m-adic completion
of R is of course R̂ = k[[x, y]]. Then, consider A = k[x, y]/(y2 − x2 − x3) and m = (x, y) ⊂ A. We claim
that A is an integral domain, but its m-adic completion is not. For the first claim, note that (y2 − x2 − x3)
is irreducible, hence it is prime, since R is a unique factorization domain. Therefore, A is in fact an integral
domain. However, Â = k[[x, y]]/(y2 − x3 − x2) is not. Let f ∈ k[[x, y]] be such that f2 = 1 + x; an example
of such a power series can be obtained in an elementary fashion (by equating coefficients, which yields

f = 1 +
1
2
x− 1

8
x2 + · · · ∈ k[[x]] ⊂ k[[x, y]]).

For this element, y2 − x2 − x3 = (y − xf)(y + xf), which shows that y2 − x2 − x3 is not prime in k[[x, y]].
Therefore, Â is not an integral domain.

10.5

We shall avoid following the hint of the book; it’s rather convoluted and an easier proof is possible. Since
M is assumed finitely generated over A, corollary (10.13) implies that

M̂ ' Â⊗AM,

for any completions of A and M . Therefore,

(M̂a)b ' Âb ⊗A (Âa ⊗AM) ' (Âb ⊗ Âa)⊗AM,

while
M̂a+b ' Âa+b ⊗AM.

It thus clearly suffices to show that
(Âa)b ' Âa+b.

Indeed, the obvious inclusions
(a + b)2n ⊆ an + bn ⊆ (a + b)n
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yield that
lim←−n

A/(anA+ bnA) ' lim←−n
A/(a + b)nA = Âa+b,

while the isomorphism
lim←−m

(lim←−n
A/(anA+ bmA)) ' lim←−n

A/(an + bn)A

yields that
Âa ⊗A Âb ' Âa+b,

as desired.

10.6

It clearly suffices to show that given any maximal ideal m, a ⊂ m if and only if m is closed in the a-adic
topology. Indeed, if a ⊂ m, then

A−m =
⋃

x∈A−m

x+ a,

hence every point in A−m has a neighborhood around it, implying that A−m is open in the a-adic topology.
Conversely, let m be closed in the a-adic topology. Then there exists a positive integer n such that

1+an ⊂ A−m. Since m is maximal, we must have either an ⊂ m or an+m = (1). But the latter contradicts
the choice of n, hence an ⊂ m, and since m is prime, a ⊂ m, as desired.

10.7

Let Â be faithfully flat over A. Then, for any finitely generated module M , the natural map M −→ M̂ is
injective; in particular, this is true for M = A/m, where m is any maximal ideal of A. Thus,

ker(A/m −→ Â/m̂) =
⋂
n≥0

an(A/m) = 0.

If a * m, then there exists a ∈ a − m, which is a unit modulo m. Hence an(A/m) = A/m for all n, which
implies that the kernel is all of A/m, a contradiction. Hence we must have a ⊂ m. Since m was arbitrary,
m ⊂ JA, which means that A is Zariski.

Conversely, let A be Zariski, with its topology being given by some a ⊂ JA and let m be a maximal ideal.
Since a ⊆ m, we have that the above equality is still true, and thus A/m injects into Â/m̂. In particular,
m̂ 6= (1), so Â is faithfully flat over A, by chapter 3, exercise 16(iii).

10.8

We see that B is local, its unique maximal ideal being A.
Moreover, B is Zariski (since the maximal ideal topology is induced by an ideal contained in the Jacobson

radical, since B is local) and thus the maximal ideal completion of B, which is C, is faithfully flat over B by
the previous exercise.

10.9

Assume inductively that we have constructed gk(x), hk(x) ∈ A[x] such that f(x)− gk(x)hk(x) ∈ mk[x] (the
case k = 1 being the hypothesis of the problem). Since g and h are coprime, there exist for each p ≤ n
polynomials ap of degree no more than n− r and bp of degree no more than r such that

apgk + bphk = xp

or,
apgk + bphk = rp(x) ∈ m[x].
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Letting q(x) =
∑
mpx

p, where mp ∈ m, we have

f(x)− gk(x)hk(x) =
∑

mp(ap(x)gk(x) + bp(x)hk(x)− rp(x)).

Let gk+1(x) = gk(x) +
∑
mpbp(x), hk+1(x) = hk(x) +

∑
mpap(x); then, gk+1 ≡ gk( mod mk+1) and likewise

for hk+1. Also, manipulation yields

f(x)− gk+1(x)hk+1(x) =
∑

mprp(x)−
∑

mpbp(x)
∑

msas(x) ∈ mk+1[x].

Thus we have for each k polynomials gk(x) and hk(x) of degrees r and n−r respectively such that f−gkhk ≡
0( mod mk+1). The coefficients of these polynomials form Cauchy sequences in A, hence converge to an
element of A, so we have limit polynomials g(x), h(x) ∈ A[x]. These are the polynomials we are looking for:
g and h are lifts of g and h and

f(x)− g(x)h(x) ∈
⋂
n≥0

mn[x] = 0,

as desired.

10.10

We have the following:
(i) This is immediate, by letting g(x) = x− α. Note that the root must be simple, so as to ensure that

g and h are coprime. The fact that a ≡ α( mod m) is obvious, since a and α coincide in A/m.
(ii) This follows easily from (a), by considering the local ring Z7 and observing that the monic polynomial

f(x) = x2 − 2 has a simple root in Z/7Z, which lifts back to Z7.
(iii) This again follows from (i) in the same fashion (ii) did (note of course that the ring os power series

in two variables is just the completion of the polynomial ring in one variable only).

10.11

A counterexample is furnished by letting A to be the ring of germs of all C∞ functions in variable x at x = 0;
this is not a Noetherian ring. However, every power series can be regarded as the Taylor expansion of some
C∞ map, therefore the completion Â is not Noetherian.

10.12

The natural inclusion A −→ A[[x1, x2, . . . , xn]] factors through A[x1, x2, . . . , xn] as follows

A −→ A[x1, x2, . . . , xn] −→ A[[x1, x2, . . . , xn]],

since A[[x1, x2, . . . , xn]] is the (x1, x2, . . . , xn)-adic completion of the polynomial ring A[x1, x2, . . . , xn]. The
first mapping above is flat (by the solution to chapter 2, exercise 5) and the second one is faithfully flat,
by chapter 1, exercise 5(v.) and the definition of faithful flatness. Therefore, A[[x1, x2, . . . , xn]] is a faithful
A-algebra, as desired.
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Chapter 11

Dimension Theory

11.1

By (11.18) we have dimAm = n− 1. Now

m/m2 ' (x1, x2, . . . , xn)/(x1, x2, . . . , xn)2 + (f)

and it has dimension n− 1 if and only if f /∈ (x1, x2, . . . , xn)2, and hence if and only if the variety f(x) = 0
is non-singular. Therefore, P is non-singular, if and only if Am is a regular local ring, as desired.

11.2

Since k[[t1, t2, . . . , tn]] is the (t1, t2, . . . , td)-adic completion of k[t1, t2, . . . , tn] the map ti 7→ xi is injective.
The fact that A is also a finitely-generated module over k[[t1, t2, . . . , td]] follows from proposition 10.24.

11.3

The result follows easily from the following: if k is an algebraic closure of k, then 11.25 holds for k, and
k[x1, x2, . . . , xn] is integral over k[x1, x2, . . . , xn]. Now Lemma 11.26 guarantees that the result will also hold
for k[x1, x2, . . . , xn], as desired.

11.4

We merely repeat the discussion of the book; there is little else to be proved. Let k be a field and
A = k[x1, x2, . . . , xn, . . . ] be a polynomial ring over k in countably many indeterminates. Let {mn}n∈N
be an increasing sequence positive integers such that mi+1 − mi > mi − mi−1 for all i > 1. Let pi =
(xmi+1, xmi+1, . . . , xmi+1) and let S be the complement in A of the union of the ideals pi. Then S is an
multiplicatively closed set and the maximal ideals of S−1A are easily seen to be precisely S−1pi; in particular,
the conditions of chapter 7, exercise 9 are fulfilled and S−1A is Noetherian. We conclude that, since the
height of each S−1pi is mi+1 −mi (and this sequence is strictly increasing), dimA =∞, as desired.

11.5

Let γ denote the usual map from the set of all finitely generated modules over A to its Grothendieck group
K(A), sending any element M to its class (M). Given the universal property of K(A), Theorem 11.1 can
be reformulated as follows: if λ0 is any homomorphism from K(A) to Z and we let the Poincaré series be
defined by:

P (M, t) =
∞∑
n=0

λ0((Mn))tn,
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then

P (M, t) =
f(t)∏s

i=1(1− tki)
,

where f(t) ∈ Z[t].

11.6

We follow the hint of the book; it largely constitutes a proof. Let f : A −→ A[x] be the natural embedding;
consider the fibre of f∗ : Spec(A[x]) −→ Spec(A) over a prime ideal p of A; this is naturally identified with
Spec(k(p)⊗A A[x]), where k(p) = Ap/pp is the residue field at p and dim k[x] = 1, since k[x] is a PID. The
above observations and chapter 4, exercise 7(ii) clearly imply the desired result, namely that

dimA+ 1 ≤ dimA[x] ≤ 2 dimA+ 1.

11.7

Again, the hint provided by the book almost amounts to a solution and, of course, we follow it. Let p
be a prime ideal of height m in A. Then, there exist a1, a2, . . . , am ∈ p such that p is a minimal prime
ideal belonging to a = (a1, a2, . . . , an). By chapter 4, exercise 7, p[x] is a minimal prime ideal of a[x] and
therefore the height of p[x] ≤ m. However, a chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pm = p induces a chain
p0[x] ⊂ p1[x] ⊂ · · · ⊂ pm[x] = p[x] (since A is Noetherian), and therefore the height of p[x] is at least m. We
deduce that the heights of p and p[x] are equal. By the solution of exercise 6, dimA[x] ≥ dimA+ 1 and the
symmetric argument (note that now we have the inverse direction too) implies dimA[x] ≤ dimA + 1. The
desired result, dimA[x] = dimA+ 1, follows.

By induction, the above claim generalizes to dimA[x1, x2, . . . , xn] = n+ dimA.


